Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 602486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732271

RESUMO

The physical presence of roots and the compounds they release affect the cohesion between roots and their environment. However, the plant traits that are important for these interactions are unknown and most methods that quantify the contributions of these traits are time-intensive and require specialist equipment and complex substrates. Our lab developed an inexpensive, high-throughput phenotyping assay that quantifies root-substrate adhesion in Arabidopsis thaliana. We now report that this method has high sensitivity and versatility for identifying different types of traits affecting root-substrate adhesion including root hair morphology, vesicle trafficking pathways, and root exudate composition. We describe a practical protocol for conducting this assay and introduce its use in a forward genetic screen to identify novel genes affecting root-substrate interactions. This assay is a powerful tool for identifying and quantifying genetic contributions to cohesion between roots and their environment.

2.
Commun Biol ; 3(1): 164, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246054

RESUMO

Soil is essential for sustaining life on land. Plant roots play a crucial role in stabilising soil and minimising erosion, although these mechanisms are still not completely understood. Consequently, identifying and breeding for plant traits to enhance erosion resistance is challenging. Root hair mutants in Arabidopsis thaliana were studied using three different quantitative methods to isolate their effect on root-soil cohesion. We present compelling evidence that micro-scale interactions of root hairs with surrounding soil increase soil cohesion and reduce erosion. Arabidopsis seedlings with root hairs were more difficult to detach from soil, compost and sterile gel media than those with hairless roots, and it was 10-times harder to erode soil from roots with than without hairs. We also developed a model that can consistently predict the impact root hairs make to soil erosion resistance. Our study thus provides new insight into the mechanisms by which roots maintain soil stability.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Erosão do Solo/prevenção & controle , Solo , Adesividade , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estações do Ano , Fatores de Tempo
3.
Carbohydr Res ; 380: 70-5, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23974348

RESUMO

The increasing prevalence of multi-drug resistant bacteria is driving efforts in the development of new antibacterial agents. This includes a resurgence of interest in the Gram-negative bacteria lipopolysaccharide (LPS) biosynthesis enzymes as drug targets. The six carbon acidic sugar 2-keto-3-deoxymanno-octulosonic acid (Kdo) is a component of the lipid A moiety of the LPS in Gram-negative bacteria. In most cases the lipid A substituted by Kdo is the minimum requirement for cell growth, thus presenting the possibility of targeting either the synthesis or incorporation of Kdo for the development of antibacterial agents. Indeed, potent in vitro inhibitors of Kdo biosynthesis enzymes have been reported but have so far failed to show sufficient in vivo action against Gram-negative bacteria. As part of an effort to design more potent antibacterial agents targeting Kdo biosynthesis, the crystal structures of the key Kdo biosynthesis enzymes from Escherichia coli have been solved and their structure based mechanisms characterized. In eukaryotes, Kdo is found as a component of the pectic polysaccharide rhamnogalacturonan II in the plant primary cell wall. Interestingly, despite incorporating Kdo into very different macromolecules the Kdo biosynthesis and activation pathway is almost completely conserved between plants and bacteria. This raises the possibility for plant research to exploit the increasingly detailed knowledge and resources being generated by the microbiology community. Likewise, insights into Kdo biosynthesis in plants will be potentially useful in efforts to produce new antimicrobial compounds.


Assuntos
Bactérias/metabolismo , Plantas/metabolismo , Açúcares Ácidos/metabolismo , Bactérias/enzimologia , Bactérias/genética , Plantas/enzimologia , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...