Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Chem ; 57(5): 176-190, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30105879

RESUMO

The 31 P chemical shift anisotropy (CSA) offers a potential source of new information to help determine the structures of aluminophosphate (AlPO) framework materials. We investigate how to measure the CSAs, which are small (span of ~20-30 ppm) for AlPOs, demonstrating the need for CSA-amplification experiments (often in conjunction with 27 Al and/or 1 H decoupling) at high magnetic field (20.0 T) to obtain accurate values. We show that the most shielded component of the chemical shift tensor, δ33 , is related to the length of the shortest P─O bond, whereas the more deshielded components, δ11 and δ22 can be related more readily to the mean P─O bond lengths and P─O─Al angles. Using the case of Mg-doped STA-2 as an example, the CSA is shown to be much larger for P(OAl)4-n (OMg)n environments, primarily owing to a much shorter P─O(Mg) bond affecting δ33 , however, because the mean P─O bond lengths and P─O─T (T = Al, Mg) bond angles do not change significantly between P(OAl)4 and P(OAl)4-n (OMg)n sites, the isotropic chemical shifts for these species are similar, leading to overlapped spectral lines. When the CSA information is included, spectral assignment becomes unambiguous, therefore, although the specialist conditions required might preclude the routine measurement of 31 P CSAs in AlPOs, in some cases (particularly doped materials), the experiments can still provide valuable additional information for spectral assignment.

2.
RSC Adv ; 8(13): 7089-7101, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29568509

RESUMO

The potential of 17O NMR spectroscopy for the investigation of A2B2O7 ceramic oxides important in the encapsulation of radioactive waste is demonstrated, with post-synthetic enrichment by exchange with 17O2 gas. For Y2Sn2O7, Y2Ti2O7 and La2Sn2O7 pyrochlores, enrichment of the two distinct O species is clearly non quantitative at lower temperatures (∼700 °C and below) and at shorter times, despite these being used in prior work, with preferential enrichment of OA2B2 favoured over that of OA4. At higher temperatures, the 17O NMR spectra suggest that quantitative enrichment has been achieved, but the integrated signal intensities do not reflect the crystallographic 1 : 6 (O1 : O2) ratio until corrected for differences in T1 relaxation rates and, more importantly, the contribution of the satellite transitions. 17O NMR spectra of Y2Zr2O7 and Y2Hf2O7 defect fluorites showed little difference with any variation in enrichment temperature or time, although an increase in the absolute level of enrichment (up to ∼7.5%) was observed at higher temperature. DFT calculations show that the six distinct resonances observed cannot be assigned unambiguously, as each has contributions from more than one of the five possible next nearest neighbour environments. For La2Ti2O7, which adopts a layered perovskite-like structure, little difference in the spectral intensities is observed with enrichment time or temperature, although the highest absolute levels of enrichment (∼13%) were obtained at higher temperature. This work demonstrates that 17O NMR has the potential to be a powerful probe of local structure and disorder in oxides, but that considerable care must be taken both in choosing the conditions for 17O enrichment and the experimental acquisition parameters if the necessary quantitative measurements are to be obtained for more complex systems.

3.
Solid State Nucl Magn Reson ; 87: 54-64, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28942230

RESUMO

Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal-organic frameworks (MOFs) with extended three-dimensional networks of transition metal nodes (bridged by rigid imidazolate linkers), with potential applications in gas storage and separation, sensing and controlled delivery of drug molecules. Here, we investigate the use of 13C and 15N solid-state NMR spectroscopy to characterise the local structure and disorder in a variety of single- and dual-linker ZIFs. In most cases, a combination of a basic knowledge of chemical shifts typically observed in solution-state NMR spectroscopy and the use of dipolar dephasing NMR experiments to reveal information about quaternary carbon species are combined to enable spectral assignment. Accurate measurement of the anisotropic components of the chemical shift provided additional information to characterise the local environment and the possibility of trying to understand the relationships between NMR parameters and both local and long-range structure. First-principles calculations on some of the simpler, ordered ZIFs were possible, and provided support for the spectral assignments, while comparison of these model systems to more disordered ZIFs aided interpretation of the more complex spectra obtained. It is shown that 13C and 15N NMR are sufficiently sensitive to detect small changes in the local environment, e.g., functionalisation of the linker, crystallographic inequivalence and changes to the framework topology, while the relative proportion of each linker present can be obtained by comparing relative intensities of resonances corresponding to chemically-similar species in cross polarisation experiments with short contact times. Therefore, multinuclear NMR spectroscopy, and in particular the measurement of both isotropic and anisotropic parameters, offers a useful tool for the structural study of ordered and, in particular, disordered ZIFs.

4.
J Phys Chem C Nanomater Interfaces ; 120(36): 20288-20296, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27721909

RESUMO

An NMR crystallographic approach, involving the combination of 119Sn NMR spectroscopy, XRD, and DFT calculations, is demonstrated for the characterization of La2Sn2-x Ti x O7 ceramics. A phase change from pyrochlore (La2Sn2O7) to a layered perovskite phase (La2Ti2O7) is predicted (by radius ratio rules) to occur when x ≈ 0.95. However, the sensitivity of NMR spectroscopy to the local environment is able to reveal a significant two-phase region is present, extending from x = 1.8 to ∼0.2, with limited solid solution at the two extremes, in broad agreement with powder XRD measurements. DFT calculations reveal that there is preferential site substitution of Sn in La2Ti2O7, with calculated shifts for Sn substitution onto Ti1 and Ti2 sites (in the "bulk" perovskite layers) in better agreement with experiment than those for Ti3 and Ti4 ("edge" sites). Substitution onto these two sites also produces structural models with lower relative enthalpy. As the Sn content decreases, there is a further preference for substitution onto Sn2. In contrast, the relative intensities of the spectral resonances suggest that Ti substitution into the pyrochlore phase is random, although only a limited solid solution is observed (up to ∼7% Ti). DFT calculations predict very similar 119Sn shifts for Sn substitution into the two proposed models of La2Ti2O7 (monoclinic (P21) and orthorhombic (Pna21)), indicating it is not possible to distinguish between them. However, the relative energy of the Sn-substituted orthorhombic phase was higher than that of substituted monoclinic cells, suggesting that the latter is the more likely structure.

5.
Phys Chem Chem Phys ; 17(14): 9049-59, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25754713

RESUMO

A combination of (89)Y and (119)Sn NMR spectroscopy and DFT calculations are used to investigate phase evolution, local structure and disorder in Y2Zr2-xSnxO7 ceramics, where a phase change is predicted, from pyrochlore to defect fluorite, with increasing Zr content. The ability of NMR to effectively probe materials that exhibit positional and compositional disorder provides insight into the atomic-scale structure in both ordered and disordered phases and, by exploiting the quantitative nature of the technique, we are able to determine detailed information on the composition of the phase(s) present and the average coordination number (and next-nearest neighbour environment) of the cations. In contrast to previous studies, a more complex picture of the phase variation with composition emerges, with single-phase pyrochlore found only for the Sn end member, and a single defect fluorite phase only for x = 0 to 0.6. A broad two-phase region is observed, from x = 1.8 to 0.8, but the two phases present have very different composition, with a maximum of 13% Zr incorporated into the pyrochlore phase, whereas the composition of the defect fluorite phase varies throughout. Preferential ordering of the anion vacancies in the defect fluorite phase is observed, with Sn only ever found in a six-coordinate environment, while remaining vacancies are shown to be more likely to be associated with Zr than Y. Our findings are then discussed in the light of those from previous studies, many of which utilize diffraction-based approaches, where, in most cases, a single phase of fixed composition has been assumed for the refinement procedure. The significant and surprising differences encountered demonstrate the need for complementary approaches to be considered for a detailed and accurate picture of both the long- and short-range structure of a solid to be achieved.

6.
J Am Chem Soc ; 136(44): 15440-56, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25296129

RESUMO

Solid-state nuclear magnetic resonance (NMR) spectroscopy has long been established as offering unique atomic-scale and element-specific insight into the structure, disorder, and dynamics of materials. NMR spectra of quadrupolar nuclei (I > (1)/2) are often perceived as being challenging to acquire and to interpret because of the presence of anisotropic broadening arising from the interaction of the electric field gradient and the nuclear electric quadrupole moment, which broadens the spectral lines, often over several megahertz. Despite the vast amount of information contained in the spectral line shapes, the problems with sensitivity and resolution have, until very recently, limited the application of NMR spectroscopy of quadrupolar nuclei in the solid state. In this Perspective, we provide a brief overview of the quadrupolar interaction, describe some of the basic experimental approaches used for acquiring high-resolution NMR spectra, and discuss the information that these spectra can provide. We then describe some interesting recent examples to showcase some of the more exciting and challenging new applications of NMR spectra of quadrupolar nuclei in the fields of energy materials, microporous materials, Earth sciences, and biomaterials. Finally, we consider the possible directions that this highly informative technique may take in the future.

7.
Phys Chem Chem Phys ; 16(6): 2660-73, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24382479

RESUMO

Periodic density functional theory (DFT) calculations have recently emerged as a popular tool for assigning solid-state nuclear magnetic resonance (NMR) spectra. However, in order for the calculations to yield accurate results, accurate structural models are also required. In many cases the structural model (often derived from crystallographic diffraction) must be optimised (i.e., to an energy minimum) using DFT prior to the calculation of NMR parameters. However, DFT does not reproduce weak long-range "dispersion" interactions well, and optimisation using some functionals can expand the crystallographic unit cell, particularly when dispersion interactions are important in defining the structure. Recently, dispersion-corrected DFT (DFT-D) has been extended to periodic calculations, to compensate for these missing interactions. Here, we investigate whether dispersion corrections are important for aluminophosphate zeolites (AlPOs) by comparing the structures optimised by DFT and DFT-D (using the PBE functional). For as-made AlPOs (containing cationic structure-directing agents (SDAs) and framework-bound anions) dispersion interactions appear to be important, with significant changes between the DFT and DFT-D unit cells. However, for calcined AlPOs, where the SDA-anion pairs are removed, dispersion interactions appear much less important, and the DFT and DFT-D unit cells are similar. We show that, while the different optimisation strategies yield similar calculated NMR parameters (providing that the atomic positions are optimised), the DFT-D optimisations provide structures in better agreement with the experimental diffraction measurements. Therefore, it appears that DFT-D calculations can, and should, be used for the optimisation of calcined and as-made AlPOs, in order to provide the closest agreement with all experimental measurements.

8.
Bioorg Med Chem Lett ; 15(8): 2087-91, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15808474

RESUMO

A series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid diamides that increase chloride transport in cells expressing mutant cystic fibrosis transmembrane conductance regulator (CFTR) protein has been identified from our compound library. Analoging efforts and the resulting structure-activity relationships uncovered are detailed. Compound potency was improved over 30-fold from the original lead, yielding several analogs with EC(50) values below 10nM in our cellular chloride transport assay.


Assuntos
Amidas/química , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Tetra-Hidroisoquinolinas/química , Amidas/metabolismo , Animais , Linhagem Celular , Transporte de Íons , Camundongos , Tetra-Hidroisoquinolinas/metabolismo
9.
J Biol Chem ; 278(23): 20851-9, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12606558

RESUMO

Tuberculosis and malaria together result in an estimated 5 million deaths annually. The spread of multidrug resistance in the most pathogenic causative agents, Mycobacterium tuberculosis and Plasmodium falciparum, underscores the need to identify active compounds with novel inhibitory properties. Although genetically unrelated, both organisms use a type II fatty-acid synthase system. Enoyl acyl carrier protein reductase (ENR), a key type II enzyme, has been repeatedly validated as an effective antimicrobial target. Using high throughput inhibitor screens with a combinatorial library, we have identified two novel classes of compounds with activity against the M. tuberculosis and P. falciparum enzyme (referred to as InhA and PfENR, respectively). The crystal structure of InhA complexed with NAD+ and one of the inhibitors was determined to elucidate the mode of binding. Structural analysis of InhA with the broad spectrum antimicrobial triclosan revealed a unique stoichiometry where the enzyme contained either a single triclosan molecule, in a configuration typical of other bacterial ENR:triclosan structures, or harbored two triclosan molecules bound to the active site. Significantly, these compounds do not require activation and are effective against wild-type and drug-resistant strains of M. tuberculosis and P. falciparum. Moreover, they provide broader chemical diversity and elucidate key elements of inhibitor binding to InhA for subsequent chemical optimization.


Assuntos
Dinitrobenzenos/farmacologia , Indóis/farmacologia , Malária/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Animais , Anti-Infecciosos Locais/metabolismo , Anti-Infecciosos Locais/farmacologia , Proteínas de Bactérias , Dinitrobenzenos/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Piperazinas/química , Plasmodium falciparum/enzimologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pirimidinas/química , Relação Estrutura-Atividade , Triclosan/metabolismo , Triclosan/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...