Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 98, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726481

RESUMO

An important factor dictating coral fitness is the quality of bacteria associated with corals and coral reefs. One way that bacteria benefit corals is by stimulating the larval to juvenile life cycle transition of settlement and metamorphosis. Tetrabromopyrrole (TBP) is a small molecule produced by bacteria that stimulates metamorphosis with and without attachment in a range of coral species. A standing debate remains, however, about whether TBP biosynthesis from live Pseudoalteromonas bacteria is the primary stimulant of coral metamorphosis. In this study, we create a Pseudoalteromonas sp. PS5 mutant lacking the TBP brominase gene, bmp2. Using this mutant, we confirm that the bmp2 gene is critical for TBP biosynthesis in Pseudoalteromonas sp. PS5. Mutation of this gene ablates the bacterium's ability in live cultures to stimulate the metamorphosis of the stony coral Porites astreoides. We further demonstrate that expression of TBP biosynthesis genes is strongest in stationary and biofilm modes of growth, where Pseudoalteromonas sp. PS5 might exist within surface-attached biofilms on the sea floor. Finally, we create a modular transposon plasmid for genomic integration and fluorescent labeling of Pseudoalteromonas sp. PS5 cells. Our results functionally link a TBP biosynthesis gene from live bacteria to a morphogenic effect in corals. The genetic techniques established here provide new tools to explore coral-bacteria interactions and could help to inform future decisions about utilizing marine bacteria or their products for coral restoration.

2.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214991

RESUMO

An important factor dictating coral fitness is the quality of bacteria associated with corals and coral reefs. One way that bacteria benefit corals is by stimulating the larval to juvenile life cycle transition of settlement and metamorphosis. Tetrabromopyrrole (TBP) is a small molecule produced by bacteria that stimulates metamorphosis in a range of coral species. A standing debate remains, however, about whether TBP biosynthesis from live Pseudoalteromonas bacteria is the primary stimulant of coral metamorphosis. In this study, we create a Pseudoalteromonas sp. PS5 mutant lacking the TBP brominase gene, bmp2 . Using this mutant, we confirm that the bmp2 gene is critical for TBP biosynthesis in Pseudoalteromonas sp. PS5. Mutation of this gene ablates the bacterium's ability in live cultures to stimulate the metamorphosis of the stony coral Porites astreoides . We further demonstrate that expression of TBP biosynthesis genes is strongest in stationary and biofilm modes of growth, where Pseudoalteromonas sp. PS5 might exist within surface-attached biofilms on the sea floor. Finally, we create a modular transposon plasmid for genomic integration and fluorescent labeling of Pseudoalteromonas sp. PS5 cells. Our results functionally link a TBP biosynthesis gene from live bacteria to a morphogenic effect in corals. The genetic techniques established here provide new tools to explore coral-bacteria interactions and could help to inform future decisions about utilizing marine bacteria or their products for restoring degraded coral reefs.

3.
Commun Biol ; 6(1): 248, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024599

RESUMO

Considered one of the most devastating coral disease outbreaks in history, stony coral tissue loss disease (SCTLD) is currently spreading throughout Florida's coral reefs and the greater Caribbean. SCTLD affects at least two dozen different coral species and has been implicated in extensive losses of coral cover. Here we show Pseudoalteromonas sp. strain McH1-7 has broad-spectrum antibacterial activity against SCTLD-associated bacterial isolates. Chemical analyses indicated McH1-7 produces at least two potential antibacterials, korormicin and tetrabromopyrrole, while genomic analysis identified the genes potentially encoding an L-amino acid oxidase and multiple antibacterial metalloproteases (pseudoalterins). During laboratory trials, McH1-7 arrested or slowed disease progression on 68.2% of diseased Montastraea cavernosa fragments treated (n = 22), and it prevented disease transmission by 100% (n = 12). McH1-7 is the most chemically characterized coral probiotic that is an effective prophylactic and direct treatment for the destructive SCTLD as well as a potential alternative to antibiotic use.


Assuntos
Antozoários , Animais , Antozoários/microbiologia , Recifes de Corais , Genômica , Região do Caribe
4.
Biol Bull ; 243(1): 76-83, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36108037

RESUMO

AbstractCoral populations are declining worldwide as a result of increased environmental stressors, including disease. Coral health is greatly dependent on complex interactions between the host animal and its associated microbial symbionts. While relatively understudied, there is growing evidence that the coral microbiome contributes to the health and resilience of corals in a variety of ways, similar to more well-studied systems, such as the human microbiome. Many of these interactions are dependent upon the production and exchange of natural products, including antibacterial compounds, quorum-sensing molecules, internal signaling molecules, nutrients, and so on. While advances in sequencing, culturing, and metabolomic techniques have aided in moving forward the understanding of coral microbiome interactions, current sequence and metabolite databases are lacking, hindering detailed descriptions of the microbes and metabolites involved. This review focuses on the roles of coral microbiomes in health and disease processes of coral hosts, with special attention to the coral metabolome. We discuss what is currently known about the relationship between the coral microbiome and disease, of beneficial microbial products or services, and how the manipulation of the coral microbiome may chemically benefit the coral host against disease. Understanding coral microbiome-metabolome interactions is critical to assisting management, conservation, and restoration strategies.


Assuntos
Antozoários , Produtos Biológicos , Microbiota , Animais , Antibacterianos , Bactérias , Humanos , Metaboloma
5.
Sci Rep ; 10(1): 21091, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273575

RESUMO

Human-driven threats to coastal marine communities could potentially affect chemically mediated behaviours that have evolved to facilitate crucial ecological processes. Chemical cues and their importance remain inadequately understood in marine systems, but cues from coastal vegetation can provide sensory information guiding aquatic animals to key resources or habitats. In the tropics, mangroves are a ubiquitous component of healthy coastal ecosystems, associated with a range of habitats from river mouths to coral reefs. Because mangrove leaf litter is a predictable cue to coastal habitats, chemical information from mangrove leaves could provide a source of settlement cues for coastal fishes, drawing larvae towards shallow benthic habitats or inducing settlement. In choice assays, juvenile fishes from the Caribbean (Belize) and Indo-Pacific (Fiji) were attracted to cues from mangroves leaves and were more attracted to cues from mangroves distant from human settlement. In the field, experimental reefs supplemented with mangrove leaves grown away from humans attracted more fish recruits from a greater diversity of species than reefs supplemented with leaves grown near humans. Together, this suggests that human use of coastal areas alters natural chemical cues, negatively affecting the behavioural responses of larval fishes and potentially suppressing recruitment. Overall, our findings highlight the critical links that exist between marine and terrestrial habitats, and the importance of considering these in the broader conservation and management of coastal ecosystems.


Assuntos
Comportamento Animal , Biodiversidade , Poluição Ambiental , Peixes/fisiologia , Odorantes , Áreas Alagadas , Animais , Sinais (Psicologia) , Folhas de Planta/química
6.
Mol Ecol ; 28(22): 4899-4913, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31596993

RESUMO

The transition from larva to adult is a critical step in the life history strategy of most marine animals. However, the genetic basis of this life history change remains poorly understood in many taxa, including most coral species. Recent evidence suggests that coral planula larvae undergo significant changes at the physiological and molecular levels throughout the development. To investigate this, we characterized differential gene expression (DGE) during the transition from planula to adult polyp in the abundant Caribbean reef-building coral Porites astreoides, that is from nonprobing to actively substrate-probing larva, a stage required for colony initiation. This period is crucial for the coral, because it demonstrates preparedness to locate appropriate substrata for settlement based on vital environmental cues. Through RNA-Seq, we identified 860 differentially expressed holobiont genes between probing and nonprobing larvae (p ≤ .01), the majority of which were upregulated in probing larvae. Surprisingly, differentially expressed genes of endosymbiotic dinoflagellate origin greatly outnumbered coral genes, compared with a nearly 1:1 ratio of coral-to-dinoflagellate gene representation in the holobiont transcriptome. This unanticipated result suggests that dinoflagellate endosymbionts may play a significant role in the transition from nonprobing to probing behaviour in dinoflagellate-rich larvae. Putative holobiont genes were largely involved in protein and nucleotide binding, metabolism and transport. Genes were also linked to environmental sensing and response and integral signalling pathways. Our results thus provide detailed insight into molecular changes prior to larval settlement and highlight the complex physiological and biochemical changes that occur in early transition stages from pelagic to benthic stages in corals, and perhaps more importantly, in their endosymbionts.


Assuntos
Antozoários/genética , Expressão Gênica/genética , Larva/genética , Animais , Região do Caribe , Recifes de Corais , Dinoflagellida/genética , Simbiose/genética , Transcriptoma/genética
7.
Nat Prod Rep ; 36(3): 410-429, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30264841

RESUMO

Covering: Most of 2013 up to the end of 2015 This review highlights the 2013-2015 marine chemical ecology literature for benthic bacteria and cyanobacteria, macroalgae, sponges, cnidarians, molluscs, other benthic invertebrates, and fish.


Assuntos
Organismos Aquáticos/química , Biologia Marinha , Animais , Cnidários/química , Crustáceos/química , Cianobactérias/química , Fungos/química , Moluscos/química , Poríferos/química , Urocordados/química
8.
Harmful Algae ; 69: 75-82, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29122244

RESUMO

Cyanobacterial blooms are predicted to become more prominent in the future as a result of increasing seawater temperatures and the continued addition of nutrients to coastal waters. Many benthic marine cyanobacteria have potent chemical defenses that protect them from top down pressures and contribute to the persistence of blooms. Blooms of benthic cyanobacteria have been observed along the coast of Florida and within the Indian River Lagoon (IRL), a biodiverse estuary system that spans 250km along Florida's east coast. In this study, the cyanobacterial bloom progression at three sites within the central IRL was monitored over the course of two summers. The blooms consisted of four unique cyanobacterial species, including the recently described Okeania erythroflocculosa. The cyanobacteria produced a range of known bioactive compounds including malyngolide, lyngbyoic acid, microcolins A-B, and desacetylmicrocolin B. Ecologically-relevant assays showed that malyngolide inhibited the growth of marine fungi (Dendryphiella salina and Lindra thalassiae); microcolins A-B and desacetylmicrocolin B inhibited feeding by a generalist herbivore, the sea urchin Lytechinus variegatus; and lyngbyoic acid inhibited fungal growth and herbivore feeding. These chemical defenses likely contribute to the persistence of cyanobacterial blooms in the IRL during the summer growing period.


Assuntos
Cianobactérias/fisiologia , Proliferação Nociva de Algas/fisiologia , Rios/microbiologia , Bioensaio , Florida , Herbivoria/fisiologia , Filogenia
9.
Proc Natl Acad Sci U S A ; 113(14): 3797-802, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001835

RESUMO

Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and dihalopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated and then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved in its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase: Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1 and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes.


Assuntos
Flavinas/metabolismo , Halogenação/fisiologia , Pseudoalteromonas/enzimologia , Pseudoalteromonas/metabolismo , Pirróis/química , Sequência de Aminoácidos , Animais , Antozoários/metabolismo , Organismos Aquáticos/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Bromo/química , Cristalografia por Raios X , Pseudoalteromonas/genética
10.
ISME J ; 9(11): 2527-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25918832

RESUMO

Crustose coralline algae (CCA) are important components of many marine ecosystems. They aid in reef accretion and stabilization, create habitat for other organisms, contribute to carbon sequestration and are important settlement substrata for a number of marine invertebrates. Despite their ecological importance, little is known about the bacterial communities associated with CCA or whether differences in bacterial assemblages may have ecological implications. This study examined the bacterial communities on four different species of CCA collected in Belize using bacterial tag-encoded FLX amplicon pyrosequencing of the V1-V3 region of the 16S rDNA. CCA were dominated by Alphaproteobacteria, Gammaproteobacteria and Actinomycetes. At the operational taxonomic unit (OTU) level, each CCA species had a unique bacterial community that was significantly different from all other CCA species. Hydrolithon boergesenii and Titanoderma prototypum, CCA species that facilitate larval settlement in multiple corals, had higher abundances of OTUs related to bacteria that inhibit the growth and/or biofilm formation of coral pathogens. Fewer coral larvae settle on the surfaces of Paragoniolithon solubile and Porolithon pachydermum. These CCA species had higher abundances of OTUs related to known coral pathogens and cyanobacteria. Coral larvae may be able to use the observed differences in bacterial community composition on CCA species to assess the suitability of these substrata for settlement and selectively settle on CCA species that contain beneficial bacteria.


Assuntos
Antozoários/microbiologia , Carbono/química , Recifes de Corais , Cianobactérias/classificação , Alga Marinha/microbiologia , Microbiologia da Água , Alphaproteobacteria/classificação , Animais , Antozoários/embriologia , Belize , Biodiversidade , DNA Ribossômico/genética , Gammaproteobacteria/classificação , Larva , RNA Ribossômico 16S/genética , Rodófitas/microbiologia , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
11.
J Nat Prod ; 78(3): 534-8, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25536090

RESUMO

A combined biodiversity- and bioassay-guided natural products discovery approach was used to explore new groups of marine cyanobacteria for novel secondary metabolites with ecologically relevant bioactivities. Phylogenetic analysis of cyanobacterial collections from Belize revealed a new taxon not previously well explored for natural products. The new alkaloid 5-hydroxy-4-(chloromethyl)-5,6,7,8-tetrahydroquinoline (1), named carriebowlinol, and the known compound lyngbic acid (2) were isolated from a nonpolar extract and identified by NMR and MS techniques. Compounds 1 and 2 inhibited the growth of pathogenic and saprophytic marine fungi, and 1 inhibited the growth of marine bacteria, suggesting an antimicrobial ecological function.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Cianobactérias/química , Quinolinas , Alcaloides/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Belize , Biodiversidade , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Biologia Marinha , Testes de Sensibilidade Microbiana , Estrutura Molecular , Filogenia , Quinolinas/química , Quinolinas/isolamento & purificação , Quinolinas/farmacologia , Quinonas
12.
Nat Prod Rep ; 31(11): 1510-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25070776

RESUMO

This review covers the recent marine chemical ecology literature for benthic bacteria and cyanobacteria, macroalgae, sponges, cnidarians, molluscs, other benthic invertebrates, and fish.


Assuntos
Meio Ambiente , Animais , Bactérias/química , Cnidários/química , Cianobactérias/química , Ecologia , Peixes , Invertebrados/química , Biologia Marinha , Estrutura Molecular , Moluscos/química , Oceanos e Mares , Poríferos/química
13.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850918

RESUMO

Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species.


Assuntos
Antozoários/fisiologia , Biofilmes , Sinais (Psicologia) , Metamorfose Biológica , Pseudoalteromonas/química , Pseudoalteromonas/fisiologia , Pirróis/metabolismo , Animais , Antozoários/crescimento & desenvolvimento , Florida , Larva/crescimento & desenvolvimento , Larva/fisiologia , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Biofouling ; 27(4): 347-56, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21512919

RESUMO

Surfaces immersed in the marine environment are under intense fouling pressure by a number of invertebrates and algae. The regulation of this fouling can often be attributed to the bacterial biofilm that quickly develops on the surface of any available substratum in the ocean. The bacterial community composition on the surface of the green alga Dictyosphaeria ocellata was investigated and compared to those found on two other green algae, Batophora oerstedii and Cladophoropsis macromeres, and on a reference surface from three sites along the Florida Keys. Although the bacterial community composition of D. ocellata was not consistent across the sites, it was significantly different from the other algae and the reference surface at two of the three sites tested. Methanol extracts of D. ocellata significantly affected the abundance of bacteria and composition of the bacterial community on Phytagel™ plates when compared to solvent controls, suggesting that the alga regulates the bacterial community by producing active metabolites.


Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica , Clorófitas/química , Microbiologia da Água , Biofilmes/efeitos dos fármacos , Florida , Extratos Vegetais/farmacologia , Dinâmica Populacional , Propriedades de Superfície
15.
FEMS Microbiol Ecol ; 75(2): 242-54, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21155850

RESUMO

Marine macroalgae are subjected to large numbers of bacteria in their environment. These bacteria have the potential to affect the health and ecology of algae in a variety of ways and can be both beneficial and harmful to the algae. Therefore, algae have likely evolved mechanisms to differentially regulate the growth of bacterial species. In this study, we examined the effects of the green alga Dictyosphaeria ocellata on the bacterioplankton community in field enclosure experiments and on individual, naturally co-occurring bacterial strains in laboratory co-culture experiments. In field experiments, we compared the bacterioplankton communities of enclosures with and without D. ocellata using denaturing gradient gel electrophoresis and found that the alga significantly changed the bacterial community composition. Seven bacterial phylotypes were eliminated in the presence of the alga and five were found exclusively with the alga. We also examined the effects of algal-treated water on the development of the bacterial community within enclosures and found no change in the community composition. Laboratory co-culture experiments revealed that D. ocellata and D. ocellata extracts affect the growth of individual bacterial strains in a species-specific manner and that the mechanisms responsible for these effects also differed by bacterial species.


Assuntos
Organismos Aquáticos/microbiologia , Bactérias/crescimento & desenvolvimento , Clorófitas/microbiologia , DNA Bacteriano , Plâncton/crescimento & desenvolvimento , Antibiose , Bactérias/classificação , Técnicas de Cocultura , Eletroforese em Gel de Gradiente Desnaturante , Florida , Plâncton/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...