Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011866, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236788

RESUMO

Rosellinia necatrix is a prevalent soil-borne plant-pathogenic fungus that is the causal agent of white root rot disease in a broad range of host plants. The limited availability of genomic resources for R. necatrix has complicated a thorough understanding of its infection biology. Here, we sequenced nine R. necatrix strains with Oxford Nanopore sequencing technology, and with DNA proximity ligation we generated a gapless assembly of one of the genomes into ten chromosomes. Whereas many filamentous pathogens display a so-called two-speed genome with more dynamic and more conserved compartments, the R. necatrix genome does not display such genome compartmentalization. It has recently been proposed that fungal plant pathogens may employ effectors with antimicrobial activity to manipulate the host microbiota to promote infection. In the predicted secretome of R. necatrix, 26 putative antimicrobial effector proteins were identified, nine of which are expressed during plant colonization. Two of the candidates were tested, both of which were found to possess selective antimicrobial activity. Intriguingly, some of the inhibited bacteria are antagonists of R. necatrix growth in vitro and can alleviate R. necatrix infection on cotton plants. Collectively, our data show that R. necatrix encodes antimicrobials that are expressed during host colonization and that may contribute to modulation of host-associated microbiota to stimulate disease development.


Assuntos
Anti-Infecciosos , Ascomicetos , Ascomicetos/genética , Plantas , Anti-Infecciosos/metabolismo
2.
New Phytol ; 237(3): 944-958, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36300791

RESUMO

Plant pathogens secrete effector proteins to support host colonization through a wide range of molecular mechanisms, while plant immune systems evolved receptors to recognize effectors or their activities to mount immune responses to halt pathogens. Importantly, plants do not act as single organisms, but rather as holobionts that actively shape their microbiota as a determinant of health. The soil-borne fungal pathogen Verticillium dahliae was recently demonstrated to exploit the VdAve1 effector to manipulate the host microbiota to promote vascular wilt disease in the absence of the corresponding immune receptor Ve1. We identify a multiallelic V. dahliae gene displaying c. 65% sequence similarity to VdAve1, named VdAve1-like (VdAve1L), which shows extreme sequence variation, including alleles that encode dysfunctional proteins, indicative of selection pressure to overcome host recognition. We show that the orphan cell surface receptor Ve2, encoded at the Ve locus, does not recognize VdAve1L. Additionally, we demonstrate that the full-length variant VdAve1L2 possesses antimicrobial activity, like VdAve1, yet with a divergent activity spectrum, that is exploited by V. dahliae to mediate tomato colonization through the direct suppression of antagonistic Actinobacteria in the host microbiota. Our findings open up strategies for more targeted biocontrol against microbial plant pathogens.


Assuntos
Actinobacteria , Verticillium , Proteínas de Plantas/metabolismo , Virulência , Actinobacteria/genética , Actinobacteria/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
FEMS Microbiol Rev ; 46(5)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35604874

RESUMO

Fungi are well-known decomposers of organic matter that thrive in virtually any environment on Earth where they encounter wealths of other microbes. Some fungi evolved symbiotic lifestyles, including pathogens and mutualists, that have mostly been studied in binary interactions with their hosts. However, we now appreciate that such interactions are greatly influenced by the ecological context in which they take place. While establishing their symbioses, fungi not only interact with their hosts but also with the host-associated microbiota. Thus, they target the host and its associated microbiota as a single holobiont. Recent studies have shown that fungal pathogens manipulate the host microbiota by means of secreted effector proteins with selective antimicrobial activity to stimulate disease development. In this review, we discuss the ecological contexts in which such effector-mediated microbiota manipulation is relevant for the fungal lifestyle and argue that this is not only relevant for pathogens of plants and animals but also beneficial in virtually any niche where fungi occur. Moreover, we reason that effector-mediated microbiota manipulation likely evolved already in fungal ancestors that encountered microbial competition long before symbiosis with land plants and mammalian animals evolved. Thus, we claim that effector-mediated microbiota manipulation is fundamental to fungal biology.


Assuntos
Microbiota , Animais , Fungos , Mamíferos , Plantas/microbiologia , Simbiose
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34853168

RESUMO

Microbes typically secrete a plethora of molecules to promote niche colonization. Soil-dwelling microbes are well-known producers of antimicrobials that are exploited to outcompete microbial coinhabitants. Also, plant pathogenic microbes secrete a diversity of molecules into their environment for niche establishment. Upon plant colonization, microbial pathogens secrete so-called effector proteins that promote disease development. While such effectors are typically considered to exclusively act through direct host manipulation, we recently reported that the soil-borne, fungal, xylem-colonizing vascular wilt pathogen Verticillium dahliae exploits effector proteins with antibacterial properties to promote host colonization through the manipulation of beneficial host microbiota. Since fungal evolution preceded land plant evolution, we now speculate that a subset of the pathogen effectors involved in host microbiota manipulation evolved from ancient antimicrobial proteins of terrestrial fungal ancestors that served in microbial competition prior to the evolution of plant pathogenicity. Here, we show that V. dahliae has co-opted an ancient antimicrobial protein as effector, named VdAMP3, for mycobiome manipulation in planta. We show that VdAMP3 is specifically expressed to ward off fungal niche competitors during resting structure formation in senescing mesophyll tissues. Our findings indicate that effector-mediated microbiome manipulation by plant pathogenic microbes extends beyond bacteria and also concerns eukaryotic members of the plant microbiome. Finally, we demonstrate that fungal pathogens can exploit plant microbiome-manipulating effectors in a life stage-specific manner and that a subset of these effectors has evolved from ancient antimicrobial proteins of fungal ancestors that likely originally functioned in manipulation of terrestrial biota.


Assuntos
Peptídeos Antimicrobianos/genética , Ascomicetos/genética , Micobioma/genética , Antibacterianos/metabolismo , Anti-Infecciosos/metabolismo , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Interações Hospedeiro-Patógeno , Micobioma/imunologia , Doenças das Plantas/microbiologia , Plantas/metabolismo , Verticillium/metabolismo , Xilema/metabolismo
5.
Nat Plants ; 6(11): 1365-1374, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33139860

RESUMO

During colonization of their hosts, pathogens secrete effector proteins to promote disease development through various mechanisms. Increasing evidence shows that the host microbiome plays a crucial role in health, and that hosts actively shape their microbiomes to suppress disease. We proposed that pathogens evolved to manipulate host microbiomes to their advantage in turn. Here, we show that the previously identified virulence effector VdAve1, secreted by the fungal plant pathogen Verticillium dahliae, displays antimicrobial activity and facilitates colonization of tomato and cotton through the manipulation of their microbiomes by suppressing antagonistic bacteria. Moreover, we show that VdAve1, and also the newly identified antimicrobial effector VdAMP2, are exploited for microbiome manipulation in the soil environment, where the fungus resides in absence of a host. In conclusion, we demonstrate that a fungal plant pathogen uses effector proteins to modulate microbiome compositions inside and outside the host, and propose that pathogen effector catalogues represent an untapped resource for new antibiotics.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Microbiota , Doenças das Plantas/microbiologia , Gossypium/crescimento & desenvolvimento , Gossypium/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Microscopia Eletrônica de Varredura , Raízes de Plantas/microbiologia , Microbiologia do Solo , Transcriptoma , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...