Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5766, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982052

RESUMO

Respiratory viruses are a major trigger of exacerbations in chronic obstructive pulmonary disease (COPD). Airway neutrophilia is a hallmark feature of stable and exacerbated COPD but roles played by neutrophil extracellular traps (NETS) in driving disease pathogenesis are unclear. Here, using human studies of experimentally-induced and naturally-occurring exacerbations we identify that rhinovirus infection induces airway NET formation which is amplified in COPD and correlates with magnitude of inflammation and clinical exacerbation severity. We show that inhibiting NETosis protects mice from immunopathology in a model of virus-exacerbated COPD. NETs drive inflammation during exacerbations through release of double stranded DNA (dsDNA) and administration of DNAse in mice has similar protective effects. Thus, NETosis, through release of dsDNA, has a functional role in the pathogenesis of COPD exacerbations. These studies open up the potential for therapeutic targeting of NETs or dsDNA as a strategy for treating virus-exacerbated COPD.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Rhinovirus , Armadilhas Extracelulares/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/virologia , Doença Pulmonar Obstrutiva Crônica/patologia , Animais , Humanos , Rhinovirus/imunologia , Camundongos , Neutrófilos/imunologia , Masculino , Feminino , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/complicações , Camundongos Endogâmicos C57BL , DNA/imunologia , Modelos Animais de Doenças , Pessoa de Meia-Idade , Inflamação/imunologia , Inflamação/virologia , Idoso
3.
ERJ Open Res ; 10(2)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529346

RESUMO

In this review, early career and senior members of Assembly 5 (Airway Diseases, Asthma, COPD and Chronic Cough) present key recent findings pertinent to airway diseases that were presented during the European Respiratory Society International Congress 2023 in Milan, Italy, with a particular focus on asthma, COPD, chronic cough and bronchiectasis. During the congress, an increased number of symposia, workshops and abstract presentations were organised. In total, 739 abstracts were submitted for Assembly 5 and the majority of these were presented by early career members. These data highlight the increased interest in this group of respiratory diseases.

4.
Front Immunol ; 14: 1254697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942327

RESUMO

Introduction: CXCL17 is a mucosally secreted protein, and the most recently identified human chemokine, an assignment based on protein fold prediction and chemotactic activity for leukocytes. However, these credentials have been the subject of much recent discussion and no experimental evidence has been presented regarding the definitive structure of CXCL17. In this study, we evaluated the structural and chemoattractant credentials of CXCL17 to better characterize this molecule, and gain deeper insights into its functional role as a glycosaminoglycan (GAG) binding protein. Methods: In the absence of structural information, in silico modeling techniques assessed the likelihood of CXCL17 adopting a chemokine fold. Recombinant CXCL17 was synthesized in mammalian and prokaryotic systems. Modified Boyden chamber and real-time chemotaxis assays assessed the ability of CXCL17 to promote chemotaxis of murine splenocytes, human neutrophils, and CXCR1 transfectants. The efficacy of CXCL17 binding to GAGs was quantified with solid-phase assays and bio-layer interferometry techniques. Results: All modeling efforts failed to support classification of CXCL17 as a chemokine based on its predicted conformation. Recombinant CXCL17 was observed to dimerize as a function of concentration, a characteristic of several chemokines. Contrary to a previous report, CXCL17 was not chemotactic for murine splenocytes, although it was a low-potency chemoattractant for human neutrophils at micromolar concentrations, several orders of magnitude higher than those required for CXCL8. As anticipated owing to its highly basic nature, CXCL17 bound to GAGs robustly, with key C-terminal motifs implicated in this process. While inactive via CXCR1, CXCL17 was found to inhibit CXCR1-mediated chemotaxis of transfectants to CXCL8 in a dose-dependent manner. Discussion: In summary, despite finding little evidence for chemokine-like structure and function, CXCL17 readily bound GAGs, and could modulate chemotactic responses to another chemokine in vitro. We postulate that such modulation is a consequence of superior GAG binding, and that C-terminal fragments of CXCL17 may serve as prototypic inhibitors of chemokine function.


Assuntos
Quimiocinas , Glicosaminoglicanos , Humanos , Animais , Camundongos , Glicosaminoglicanos/metabolismo , Quimiocinas/metabolismo , Quimiotaxia , Neutrófilos/metabolismo , Mamíferos/metabolismo , Quimiocinas CXC/metabolismo
5.
Nat Commun ; 14(1): 6607, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857661

RESUMO

Obesity is a well-recognized risk factor for severe influenza infections but the mechanisms underlying susceptibility are poorly understood. Here, we identify that obese individuals have deficient pulmonary antiviral immune responses in bronchoalveolar lavage cells but not in bronchial epithelial cells or peripheral blood dendritic cells. We show that the obese human airway metabolome is perturbed with associated increases in the airway concentrations of the adipokine leptin which correlated negatively with the magnitude of ex vivo antiviral responses. Exogenous pulmonary leptin administration in mice directly impaired antiviral type I interferon responses in vivo and ex vivo in cultured airway macrophages. Obese individuals hospitalised with influenza showed dysregulated upper airway immune responses. These studies provide insight into mechanisms driving propensity to severe influenza infections in obesity and raise the potential for development of leptin manipulation or interferon administration as novel strategies for conferring protection from severe infections in obese higher risk individuals.


Assuntos
Influenza Humana , Interferon Tipo I , Humanos , Animais , Camundongos , Leptina , Influenza Humana/complicações , Obesidade/complicações , Imunidade
6.
Am J Respir Crit Care Med ; 208(10): 1115-1125, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713301

RESUMO

Rationale: Mounting evidence demonstrates a role for extracellular vesicles (EVs) in driving lung disorders, such as chronic obstructive pulmonary disease (COPD). Although cigarette smoke (CS) is the primary risk factor for COPD, a link between CS and the EVs that could lead to COPD is unknown. Objective: To ascertain whether exposure to CS elicits a proteolytic EV signature capable of driving disease pathogenesis. Methods: Protease expression and enzymatic activity were measured in EVs harvested from the BAL fluid of smoke-exposed mice and otherwise healthy human smokers. Pathogenicity of EVs was examined using pathological tissue scoring after EV transfer into naive recipient mice. Measurements and Main Results: The analyses revealed a unique EV profile defined by neutrophil- and macrophage-derived EVs. These EVs are characterized by abundant surface expression of neutrophil elastase (NE) and matrix metalloproteinase 12 (MMP12), respectively. CS-induced mouse or human-derived airway EVs had a robust capacity to elicit rapid lung damage in naive recipient mice, with an additive effect of NE- and MMP12-expressing EVs. Conclusions: These studies demonstrate the capacity of CS to drive the generation of unique EV populations containing NE and MMP12. The coordinated action of these EVs is completely sufficient to drive emphysematous disease, and their presence could operate as a prognostic indicator for COPD development. Furthermore, given the robust capacity of these EVs to elicit emphysema in naive mice, they provide a novel model to facilitate preclinical COPD research. Indeed, the development of this model has led to the discovery of a previously unrecognized CS-induced protective mechanism against EV-mediated damage.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Peptídeo Hidrolases/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão , Enfisema Pulmonar/etiologia , Elastase Pancreática/metabolismo , Fumar/efeitos adversos , Modelos Animais de Doenças
7.
ERJ Open Res ; 9(3)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37228280

RESUMO

The European Respiratory Society (ERS) celebrated the return of an in-person meeting in Barcelona, Spain, after 2 years of virtual congresses. The ERS Congress 2022 programme was replete with symposia, skills workshops and abstract presentations from all 14 assemblies, encompassing over 3000 abstracts presented in the form of thematic poster discussion and oral presentations. In this article, highlights from the ERS Congress 2022 (including from thematic poster sessions, oral presentations and symposia from keynote speakers), presented by Assembly 5 (Airway diseases, asthma, COPD and chronic cough), are reviewed by Early Career Members and experts in the field, with the aim of presenting key recent findings in the field.

8.
Cytometry A ; 103(2): 110-116, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331092

RESUMO

This 25-parameter, 22-color full spectrum flow cytometry panel was designed and optimized for the comprehensive enumeration and functional characterization of innate lymphoid cell (ILC) subsets in mouse tissues. The panel presented here allows the discrimination of ILC progenitors (ILCP), ILC1, ILC2, NCR+ ILC3, NCR- ILC3, CCR6+ lymphoid tissue-inducer (LTi)-like ILC3 and mature natural killer (NK) cell populations. Further characterization of ILC and NK cell functional profiles in response to stimulation is provided by the inclusion of subset-specific cytokine markers, and proliferation markers. Development and optimization of this panel was performed on freshly isolated cells from adult BALB/c lungs and small intestine lamina propria, and ex vivo stimulation with phorbol 12-myrisate 13-acetate, ionomycin, and pro-ILC activating cytokines.


Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Imunofenotipagem , Citometria de Fluxo , Células Matadoras Naturais , Citocinas
10.
Immunity ; 55(3): 542-556.e5, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35151371

RESUMO

Some patients hospitalized with acute COVID-19 suffer respiratory symptoms that persist for many months. We delineated the immune-proteomic landscape in the airways and peripheral blood of healthy controls and post-COVID-19 patients 3 to 6 months after hospital discharge. Post-COVID-19 patients showed abnormal airway (but not plasma) proteomes, with an elevated concentration of proteins associated with apoptosis, tissue repair, and epithelial injury versus healthy individuals. Increased numbers of cytotoxic lymphocytes were observed in individuals with greater airway dysfunction, while increased B cell numbers and altered monocyte subsets were associated with more widespread lung abnormalities. A one-year follow-up of some post-COVID-19 patients indicated that these abnormalities resolved over time. In summary, COVID-19 causes a prolonged change to the airway immune landscape in those with persistent lung disease, with evidence of cell death and tissue repair linked to the ongoing activation of cytotoxic T cells.


Assuntos
Linfócitos B/imunologia , COVID-19/imunologia , Monócitos/imunologia , Transtornos Respiratórios/imunologia , Sistema Respiratório/imunologia , SARS-CoV-2/fisiologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , COVID-19/complicações , Feminino , Seguimentos , Humanos , Imunidade Celular , Imunoproteínas , Masculino , Pessoa de Meia-Idade , Proteoma , Transtornos Respiratórios/etiologia , Sistema Respiratório/patologia
12.
Immunology ; 164(4): 701-721, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547115

RESUMO

Neutrophils are critical components of the body's immune response to infection, being loaded with a potent arsenal of toxic mediators and displaying immense destructive capacity. Given the potential of neutrophils to impart extensive tissue damage, it is perhaps not surprising that when augmented these cells are also implicated in the pathology of inflammatory diseases. Prominent neutrophilic inflammation is a hallmark feature of patients with chronic lung diseases such as chronic obstructive pulmonary disease, severe asthma, bronchiectasis and cystic fibrosis, with their numbers frequently associating with worse prognosis. Accordingly, it is anticipated that neutrophils are central to the pathology of these diseases and represent an attractive therapeutic target. However, in many instances, evidence directly linking neutrophils to the pathology of disease has remained somewhat circumstantial and strategies that have looked to reduce neutrophilic inflammation in the clinic have proved largely disappointing. We have classically viewed neutrophils as somewhat crude, terminally differentiated, insular and homogeneous protagonists of pathology. However, it is now clear that this does not do the neutrophil justice, and we now recognize that these cells exhibit heterogeneity, a pronounced awareness of the localized environment and a remarkable capacity to interact with and modulate the behaviour of a multitude of cells, even exhibiting anti-inflammatory, pro-resolving and pro-repair functions. In this review, we discuss evidence for the role of neutrophils in chronic lung disease and how our evolving view of these cells may impact upon our perceived assessment of their contribution to disease pathology and efforts to target them therapeutically.


Assuntos
Suscetibilidade a Doenças , Pneumopatias/etiologia , Pneumopatias/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Biomarcadores , Plasticidade Celular/imunologia , Doença Crônica , Diagnóstico Diferencial , Regulação da Expressão Gênica , Humanos , Pneumopatias/diagnóstico , Neutrófilos/patologia , Especificidade de Órgãos
14.
J Cyst Fibros ; 19(1): 40-48, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31176670

RESUMO

BACKGROUND: Proline-glycine-proline (PGP) is a bioactive fragment of collagen generated by the action of matrix metalloproteinase-9 (MMP-9) and prolylendopeptidase (PE), and capable of eliciting neutrophil chemotaxis and epithelial remodelling. PGP is normally then degraded by leukotriene A4 hydrolase (LTA4H) to limit inflammation and remodelling. This study hypothesized that early and persistent airway neutrophilia in Cystic Fibrosis (CF) may relate to abnormalities in the PGP pathway and sought to understand underlying mechanisms. METHODS: Broncho-alveolar lavage (BAL) fluid was obtained from 38 CF (9 newborns and 29 older children) and 24 non-CF children. BAL cell differentials and levels of PGP, MMP-9, PE and LTA4H were assessed. RESULTS: Whilst PGP was present in all but one of the older CF children tested, it was absent in non-CF controls and the vast majority of CF newborns. BAL levels of MMP-9 and PE were elevated in older children with CF relative to CF newborns and non-CF controls, correlating with airway neutrophilia and supportive of PGP generation. Furthermore, despite extracellular LTA4H commonly being greatly elevated concomitantly with inflammation to promote PGP degradation, this was not the case in CF children, potentially owing to degradation by neutrophil elastase. CONCLUSIONS: A striking imbalance between PGP-generating and -degrading enzymes enables PGP accumulation in CF children from early life and potentially supports airway neutrophilia.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Quimiotaxia de Leucócito/imunologia , Fibrose Cística , Metaloproteinase 9 da Matriz/metabolismo , Neutrófilos , Oligopeptídeos/metabolismo , Prolina/análogos & derivados , Prolil Oligopeptidases/metabolismo , Remodelação das Vias Aéreas/imunologia , Broncoscopia/métodos , Criança , Fibrose Cística/diagnóstico , Fibrose Cística/imunologia , Fibrose Cística/fisiopatologia , Feminino , Humanos , Recém-Nascido , Inflamação/metabolismo , Elastase de Leucócito/metabolismo , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Prolina/metabolismo , Escarro/imunologia
15.
Sci Immunol ; 4(41)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704734

RESUMO

Neutrophil mobilization, recruitment, and clearance must be tightly regulated as overexuberant neutrophilic inflammation is implicated in the pathology of chronic diseases, including asthma. Efforts to target neutrophils therapeutically have failed to consider their pleiotropic functions and the implications of disrupting fundamental regulatory pathways that govern their turnover during homeostasis and inflammation. Using the house dust mite (HDM) model of allergic airway disease, we demonstrate that neutrophil depletion unexpectedly resulted in exacerbated T helper 2 (TH2) inflammation, epithelial remodeling, and airway resistance. Mechanistically, this was attributable to a marked increase in systemic granulocyte colony-stimulating factor (G-CSF) concentrations, which are ordinarily negatively regulated in the periphery by transmigrated lung neutrophils. Intriguingly, we found that increased G-CSF augmented allergic sensitization in HDM-exposed animals by directly acting on airway type 2 innate lymphoid cells (ILC2s) to elicit cytokine production. Moreover, increased systemic G-CSF promoted expansion of bone marrow monocyte progenitor populations, which resulted in enhanced antigen presentation by an augmented peripheral monocyte-derived dendritic cell pool. By modeling the effects of neutrophil depletion, our studies have uncovered previously unappreciated roles for G-CSF in modulating ILC2 function and antigen presentation. More broadly, they highlight an unexpected regulatory role for neutrophils in limiting TH2 allergic airway inflammation.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Linfócitos/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
16.
J Clin Invest ; 129(10): 4077-4079, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483292

RESUMO

Electronic nicotine delivery systems (ENDS) are rapidly increasing in popularity due to the perception that they may represent a safe alternative to conventional cigarettes. However, a growing body of evidence indicates that ENDS exposure can disrupt maintenance of pulmonary immune homeostasis and antimicrobial immunity. In this issue of the JCI, Madison et al. demonstrate that in mice, chronic ENDS exposure induces profound alterations in lipid homeostasis. ENDS-exposed mice showed irregularities in the surfactant-secreting lamellar bodies within type 2 alveolar cells and increased intracellular phospholipid accumulation within alveolar macrophages. Moreover, ENDS-exposed mice displayed greater inflammation and tissue damage in response to influenza A, which may be due to downregulated expression of a viral pattern-recognition receptor in alveolar macrophages. Collectively, the results of this study identify previously unrecognized adverse effects of ENDS exposure on pulmonary lipid metabolism, although the implication of these effects on long-term respiratory health requires future exploration.


Assuntos
Queimaduras , Sistemas Eletrônicos de Liberação de Nicotina , Animais , Homeostase , Imunidade Inata , Lipídeos , Camundongos , Nicotina
17.
Eur J Immunol ; 49(9): 1380-1390, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31365119

RESUMO

CD200 receptor 1(CD200R1) signalling limits myeloid cell responses and reduces autoimmunity, alloimmunity and viral-mediated immunopathology, but has never been examined in the context of eosinophilic inflammation. Susceptibility to lung fungal infection is associated with T-helper 2 (Th2) cytokine dominated responses and strong eosinophilic pathology. Blockade of CD200R1 enhances type I cytokine responses in many infectious and non-infectious settings and so may promote a more protective response to fungal infection. By contrast, we demonstrate that, rather than promoting type I cytokine responses, CD200R1 blockade enhanced eosinophilia in a mouse model of Cryptococcus neoformans infection, whereas CD200R1 agonism reduced lung eosinophilia - with neither strategy completely altering fungal burden. Thus, we reveal a surprising disconnect between pulmonary eosinophilia and cryptococcal burden and dissemination. This research has 2 important implications. Firstly, a lack of CD200R1 signalling enhances immune responses regardless of cytokine polarisation, and secondly reducing eosinophils does not allow protective immunity to develop in susceptible fungal system. Therefore, agonists of CD200R1 may be beneficial for eosinophilic pathologies.


Assuntos
Pneumopatias Fúngicas/imunologia , Receptores de Orexina/imunologia , Eosinofilia Pulmonar/imunologia , Animais , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus neoformans/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/microbiologia , Pulmão , Pneumopatias Fúngicas/microbiologia , Camundongos , Células Mieloides/imunologia , Células Mieloides/microbiologia , Eosinofilia Pulmonar/microbiologia , Células Th2/imunologia , Células Th2/microbiologia
18.
Sci Transl Med ; 11(497)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217333

RESUMO

We provide further evidence to support our assertion that PGP is a potent regulator of epithelial remodeling.


Assuntos
Asma , Hipersensibilidade Respiratória , Matriz Extracelular , Humanos
20.
Matrix Biol ; 80: 14-28, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29933044

RESUMO

Little is known about the impact of viral infections on lung matrix despite its important contribution to mechanical stability and structural support. The composition of matrix also indirectly controls inflammation by influencing cell adhesion, migration, survival, proliferation and differentiation. Hyaluronan is a significant component of the lung extracellular matrix and production and degradation must be carefully balanced. We have discovered an imbalance in hyaluronan production following resolution of a severe lung influenza virus infection, driven by hyaluronan synthase 2 from epithelial cells, endothelial cells and fibroblasts. Furthermore hyaluronan is complexed with inter-α-inhibitor heavy chains due to elevated TNF-stimulated gene 6 expression and sequesters CD44-expressing macrophages. We show that intranasal administration of exogenous hyaluronidase is sufficient to release inter-α-inhibitor heavy chains, reduce lung hyaluronan content and restore lung function. Hyaluronidase is already used to facilitate dispersion of co-injected materials in the clinic. It is therefore feasible that fibrotic changes following severe lung infection and inflammation could be overcome by targeting abnormal matrix production.


Assuntos
Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/virologia , alfa-Globulinas/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Influenza Humana/metabolismo , Macrófagos/imunologia , Camundongos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...