Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 99(2): 835-843, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35841216

RESUMO

Freshwater sanitation and disinfection using a variety of chemical entities as chlorination agents is an essential public health intervention ensuring water safety for populations at a global scale. Recently, we have published our observation that the small molecule oxidant, innate immune factor and chlorination agent HOCl antagonize inflammation and photocarcinogenesis in murine skin exposed topically to environmentally relevant concentrations of HOCl. Chlorinated isocyanuric acid derivatives (including the chloramines trichloroisocyanuric acid [TCIC] and dichloroisocyanuric acid [DCIC]) are used worldwide as alternate chlorination agents serving as HOCl precursor and stabilizer compounds ensuring sustained release in aqueous environments including public water systems, recreational pools and residential hot tubs. Here, for the first time, we have examined the cutaneous TCIC-induced transcriptional stress response (in both an organotypic epidermal model and in AP-1 luciferase reporter SKH-1 mouse skin), also examining molecular consequences of subsequent treatment with solar ultraviolet (UV) radiation. Taken together, our findings indicate that cutaneous delivery of TCIC significantly enhances UV-induced inflammation (as profiled at the gene expression level), suggesting a heretofore unrecognized potential to exacerbate UV-induced functional and structural cutaneous changes. These observations deserve further molecular investigations in the context of TCIC-based freshwater disinfection with health implications for populations worldwide.


Assuntos
Desinfetantes , Água Potável , Piscinas , Poluentes Químicos da Água , Purificação da Água , Animais , Camundongos , Fator de Transcrição AP-1 , Camundongos Transgênicos , Halogenação , Desinfecção , Expressão Gênica
2.
Front Oncol ; 12: 887220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574306

RESUMO

A multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e. additive, antagonistic, or synergistic) interactions between multiple extrinsic (exposome) and intrinsic (biological) factors are important determinants of skin health outcomes. Here, we review the role of hypochlorous acid (HOCl) as an emerging component of the skin exposome serving molecular functions as an innate immune factor, environmental toxicant, and topical chemopreventive agent targeting solar UV-induced skin cancer. HOCl [and its corresponding anion (OCl-; hypochlorite)], a weak halogen-based acid and powerful oxidant, serves two seemingly unrelated molecular roles: (i) as an innate immune factor [acting as a myeloperoxidase (MPO)-derived microbicidal factor] and (ii) as a chemical disinfectant used in freshwater processing on a global scale, both in the context of drinking water safety and recreational freshwater use. Physicochemical properties (including redox potential and photon absorptivity) determine chemical reactivity of HOCl towards select biochemical targets [i.e. proteins (e.g. IKK, GRP78, HSA, Keap1/NRF2), lipids, and nucleic acids], essential to its role in innate immunity, antimicrobial disinfection, and therapeutic anti-inflammatory use. Recent studies have explored the interaction between solar UV and HOCl-related environmental co-exposures identifying a heretofore unrecognized photo-chemopreventive activity of topical HOCl and chlorination stress that blocks tumorigenic inflammatory progression in UV-induced high-risk SKH-1 mouse skin, a finding with potential implications for the prevention of human nonmelanoma skin photocarcinogenesis.

3.
Mol Carcinog ; 61(6): 603-614, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35417045

RESUMO

Molecularly targeted therapeutics have revolutionized the treatment of BRAFV600E -driven malignant melanoma, but the rapid development of resistance to BRAF kinase inhibitors (BRAFi) presents a significant obstacle. The use of clinical antimalarials for the investigational treatment of malignant melanoma has shown only moderate promise, attributed mostly to inhibition of lysosomal-autophagic adaptations of cancer cells, but identification of specific antimalarials displaying single-agent antimelanoma activity has remained elusive. Here, we have screened a focused library of clinically used artemisinin-combination therapeutic (ACT) antimalarials for the apoptotic elimination of cultured malignant melanoma cell lines, also examining feasibility of overcoming BRAFi-resistance comparing isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E /NRASQ61 vs. BRAFi-resistant A375-BRAFV600E /NRASQ61K ). Among ACT antimalarials tested, mefloquine (MQ) was the only apoptogenic agent causing melanoma cell death at low micromolar concentrations. Comparative gene expression-array analysis (A375-BRAFV600E /NRASQ61 vs. A375-BRAFV600E /NRASQ61K ) revealed that MQ is a dual inducer of endoplasmic reticulum (ER) and redox stress responses that precede MQ-induced loss of viability. ER-trackerTM DPX fluorescence imaging and electron microscopy indicated ER swelling, accompanied by rapid induction of ER stress signaling (phospho-eIF2α, XBP-1s, ATF4). Fluo-4 AM-fluorescence indicated the occurrence of cytosolic calcium overload observable within seconds of MQ exposure. In a bioluminescent murine model employing intracranial injection of A375-Luc2 (BRAFV600E /NRASQ61K ) cells, an oral MQ regimen efficiently antagonized brain tumor growth. Taken together, these data suggest that the clinical antimalarial MQ may be a valid candidate for drug repurposing aiming at chemotherapeutic elimination of malignant melanoma cells, even if metastasized to the brain and BRAFi-resistant.


Assuntos
Antimaláricos , Neoplasias Encefálicas , Melanoma , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , GTP Fosfo-Hidrolases/genética , Humanos , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
4.
Redox Biol ; 45: 102042, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144392

RESUMO

Hypochlorous acid (HOCl) is the active oxidizing principle underlying drinking water disinfection, also delivered by numerous skin disinfectants and released by standard swimming pool chemicals used on a global scale, a topic of particular relevance in the context of the ongoing COVID-19 pandemic. However, the cutaneous consequences of human exposure to HOCl remain largely unknown, posing a major public health concern. Here, for the first time, we have profiled the HOCl-induced stress response in reconstructed human epidermis and SKH-1 hairless mouse skin. In addition, we have investigated the molecular consequences of solar simulated ultraviolet (UV) radiation and HOCl combinations, a procedure mimicking co-exposure experienced for example by recreational swimmers exposed to both HOCl (pool disinfectant) and UV (solar radiation). First, gene expression elicited by acute topical HOCl exposure was profiled in organotypic human reconstructed epidermis. Next, co-exposure studies (combining topical HOCl and UV) performed in SKH-1 hairless mouse skin revealed that the HOCl-induced cutaneous stress response blocks redox and inflammatory gene expression elicited by subsequent acute UV exposure (Nos2, Ptgs2, Hmox1, Srxn1), a finding consistent with emerging clinical evidence in support of a therapeutic role of topical HOCl formulations for the suppression of inflammatory skin conditions (e.g. atopic dermatitis, psoriasis). Likewise, in AP-1 transgenic SKH-1 luciferase-reporter mice, topical HOCl suppressed UV-induced inflammatory signaling assessed by bioluminescent imaging and gene expression analysis. In the SKH-1 high-risk mouse model of UV-induced human keratinocytic skin cancer, topical HOCl blocked tumorigenic progression and inflammatory gene expression (Ptgs2, Il19, Tlr4), confirmed by immunohistochemical analysis including 3-chloro-tyrosine-epitopes. These data illuminate the molecular consequences of HOCl-exposure in cutaneous organotypic and murine models assessing inflammatory gene expression and modulation of UV-induced carcinogenesis. If translatable to human skin these observations provide novel insights on molecular consequences of chlorination stress relevant to environmental exposure and therapeutic intervention.


Assuntos
COVID-19 , Neoplasias Cutâneas , Animais , Carcinogênese , Expressão Gênica , Humanos , Ácido Hipocloroso , Camundongos , Camundongos Transgênicos , Pandemias , SARS-CoV-2 , Pele , Raios Ultravioleta/efeitos adversos
5.
Cancers (Basel) ; 12(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466621

RESUMO

Metabolic reprogramming is a molecular hallmark of cancer. Recently, we have reported the overexpression of glyoxalase 1 (encoded by GLO1), a glutathione-dependent enzyme involved in detoxification of the reactive glycolytic byproduct methylglyoxal, in human malignant melanoma cell culture models and clinical samples. However, the specific role of GLO1 in melanomagenesis remains largely unexplored. Here, using genetic target modulation, we report the identification of GLO1 as a novel molecular determinant of invasion and metastasis in malignant melanoma. First, A375 human malignant melanoma cells with GLO1 deletion (A375-GLO1_KO) were engineered using CRISPR/Cas9, and genetic rescue clones were generated by stable transfection of KO clones employing a CMV-driven GLO1 construct (A375-GLO1_R). After confirming GLO1 target modulation at the mRNA and protein levels (RT-qPCR, immunodetection, enzymatic activity), phenotypic characterization indicated that deletion of GLO1 does not impact proliferative capacity while causing significant sensitization to methylglyoxal-, chemotherapy-, and starvation-induced cytotoxic stress. Employing differential gene expression array analysis (A375-GLO1_KO versus A375-GLO1_WT), pronounced modulation of epithelial--mesenchymal transition (EMT)-related genes [upregulated: CDH1, OCLN, IL1RN, PDGFRB, SNAI3; (downregulated): BMP1, CDH2, CTNNB1, FN1, FTH1, FZD7, MELTF, MMP2, MMP9, MYC, PTGS2, SNAI2, TFRC, TWIST1, VIM, WNT5A, ZEB1, and ZEB2 (up to tenfold; p < 0.05)] was observed-all of which are consistent with EMT suppression as a result of GLO1 deletion. Importantly, these expression changes were largely reversed upon genetic rescue employing A375-GLO1_R cells. Differential expression of MMP9 as a function of GLO1 status was further substantiated by enzymatic activity and ELISA analysis; phenotypic assessment revealed the pronounced attenuation of morphological potential, transwell migration, and matrigel 3D-invasion capacity displayed by A375-GLO1_KO cells, reversed again in genetic rescue clones. Strikingly, in a SCID mouse metastasis model, lung tumor burden imposed by A375-GLO1_KO cells was strongly attenuated as compared to A375-GLO1_WT cells. Taken together, these prototype data provide evidence in support of a novel function of GLO1 in melanoma cell invasiveness and metastasis, and ongoing investigations explore the function and therapeutic potential of GLO1 as a novel melanoma target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...