Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Immunol ; 12: 648420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589081

RESUMO

Background: A functional cure for chronic HBV could be achieved by boosting HBV-specific immunity. In vitro studies show that immunotherapy could be an effective strategy. However, these studies include strategies to enrich HBV-specific CD8 T cells, which could alter the expression of the anti-PD-1/anti-PD-L1 antibody targets. Our aim was to determine the efficacy of PD-L1 blockade ex vivo. Methods: HBV-specific CD8 T cells were characterized ex vivo by flow cytometry for the simultaneous analysis of six immune populations and 14 activating and inhibitory receptors. Ex vivo functionality was quantified by ELISpot and by combining peptide pool stimulation, dextramers and intracellular flow cytometry staining. Results: The functionality of HBV-specific CD8 T cells is associated with a higher frequency of cells with low exhaustion phenotype (LAG3-TIM3-PD-1+), independently of the clinical parameters. The accumulation of HBV-specific CD8 T cells with a functionally exhausted phenotype (LAG3+TIM3+PD-1+) is associated with lack of ex vivo functionality. PD-L1 blockade enhanced the HBV-specific CD8 T cell response only in patients with lower exhaustion levels, while response to PD-L1 blockade was abrogated in patients with higher frequencies of exhausted HBV-specific CD8 T cells. Conclusion: Higher levels of functionally exhausted HBV-specific CD8 T cells are associated with a lack of response that cannot be restored by blocking the PD-1:PD-L1 axis. This suggests that the clinical effectiveness of blocking the PD-1:PD-L1 axis as a monotherapy may be restricted. Combination strategies, potentially including the combination of anti-LAG-3 with other anti-iR antibodies, will likely be required to elicit a functional cure for patients with high levels of functionally exhausted HBV-specific CD8 T cells.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Hepatite B Crônica/imunologia , Hepatite B Crônica/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Adulto , Antígenos CD/metabolismo , Estudos de Coortes , Feminino , Vírus da Hepatite B/imunologia , Hepatite B Crônica/terapia , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Proteína do Gene 3 de Ativação de Linfócitos
2.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092578

RESUMO

Respiratory syncytial virus (RSV) infection of seronegative children previously immunized with formalin-inactivated (FI) RSV has been associated with serious enhanced respiratory disease (ERD). The phenomenon was reproduced in the cotton rat and the mouse, and both preclinical models have been routinely used to evaluate the safety of new RSV vaccine candidates. More recently, we demonstrated that immunizations with suboptimal doses of the RSV fusion (F) antigen, in its post- or prefusion conformation, and in the presence of a Th1-biasing adjuvant, unexpectedly led to ERD in the cotton rat model. To assess if those observations are specific to the cotton rat and to elucidate the mechanism by which vaccination with low antigen doses can drive ERD post-RSV challenge, we evaluated RSV post-F antigen dose de-escalation in BALB/c mice in the presence of a Th1-biasing adjuvant. While decreasing antigen doses, we observed an increase in lung inflammation associated with an upregulation of proinflammatory cytokines. The amplitude of the lung histopathology was comparable to that of FI-RSV-induced ERD, confirming the observations made in the cotton rat. Importantly, depletion of CD4+ T cells prior to viral challenge completely abrogated ERD, preventing proinflammatory cytokine upregulation and the infiltration of T cells, neutrophils, eosinophils, and macrophages into the lung. Overall, low-antigen-dose-induced ERD resembles FI-RSV-induced ERD, except that the former appears in the absence of detectable levels of viral replication and in the context of a Th1-biased immune response. Taken together, our observations reinforce the recent concept that vaccines developed for RSV-naïve individuals should be systematically tested under suboptimal dosing conditions.IMPORTANCE RSV poses a significant health care burden and is the leading cause of serious lower-respiratory-tract infections in young children. A formalin-inactivated RSV vaccine developed in the 1960s not only showed a complete lack of efficacy against RSV infection but also induced severe lung disease enhancement in vaccinated children. Since then, establishing safety in preclinical models has been one of the major challenges to RSV vaccine development. We recently observed in the cotton rat model that suboptimal immunizations with RSV fusion protein could induce lung disease enhancement. In the present study, we extended suboptimal dosing evaluation to the mouse model. We confirmed the induction of lung disease enhancement by vaccinations with low antigen doses and dissected the associated immune mechanisms. Our results stress the need to evaluate suboptimal dosing for any new RSV vaccine candidate developed for seronegative infants.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunização/métodos , Pneumopatias/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Proteínas Virais de Fusão/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Modelos Animais de Doenças , Imunização/efeitos adversos , Pulmão/patologia , Pneumopatias/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/efeitos adversos
3.
PLoS One ; 12(11): e0188708, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182682

RESUMO

Respiratory syncytial virus (RSV) is recognized as an important cause of lower and upper respiratory tract infections in older adults, and a successful vaccine would substantially lower morbidity and mortality in this age group. Recently, two vaccine candidates based on soluble purified glycoprotein F (RSV F), either alone or adjuvanted with glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE), failed to reach their primary endpoints in clinical efficacy studies, despite demonstrating the desired immunogenicity profile and efficacy in young rodent models. Here, one of the RSV F vaccine candidates (post-fusion conformation, RSV post-F), and a stabilized pre-fusion form of RSV F (RSV pre-F, DS-Cav1) were evaluated in aged BALB/c mice. Humoral and cellular immunogenicity elicited after immunization of naïve, aged mice was generally lower compared to young animals. In aged mice, RSV post-F vaccination without adjuvant poorly protected the respiratory tract from virus replication, and addition of GLA-SE only improved protection in the lungs, but not in nasal turbinates. RSV pre-F induced higher neutralizing antibody titers compared to RSV post-F (as previously reported) but interestingly, RSV F-specific CD8 T cell responses were lower compared to RSV post-F responses regardless of age. The vaccines were also tested in RSV seropositive aged mice, in which both antigen forms similarly boosted neutralizing antibody titers, although GLA-SE addition boosted neutralizing activity only in RSV pre-F immunized animals. Cell-mediated immune responses in the aged mice were only slightly boosted and well below levels induced in seronegative young mice. Taken together, the findings suggest that the vaccine candidates were not able to induce a strong anti-RSV immune response in recipient mice with an aged immune system, in agreement with recent human clinical trial results. Therefore, the aged mouse model could be a useful tool to evaluate improved vaccine candidates, targeted to prevent RSV disease in older adults.


Assuntos
Fatores Etários , Proteínas Recombinantes de Fusão/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Anticorpos Antivirais/biossíntese , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/metabolismo
4.
Mol Pharm ; 14(7): 2285-2293, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28544850

RESUMO

PCPP, a well-defined polyphosphazene macromolecule, has been studied as an immunoadjuvant for a soluble form of the postfusion glycoprotein of respiratory syncytial virus (RSV sF), which is an attractive vaccine candidate for inducing RSV-specific immunity in mice and humans. We demonstrate that RSV sF-PCPP formulations induce high neutralization titers to RSV comparable to alum formulations even at a low PCPP dose and protect animals against viral challenge both in the lung and in the upper respiratory tract. PCPP formulations were also characterized by Th1-biased responses, compared to Th2-biased responses that are more typical for RSV sF alone or RSV sF-alum formulations, suggesting an inherent immunostimulating activity of the polyphosphazene adjuvant. We defined these immunologically active RSV sF-PCPP formulations as self-assembled water-soluble protein-polymer complexes with distinct physicochemical parameters. The secondary structure and antigenicity of the protein in the complex were fully preserved during the spontaneous aqueous self-assembly process. These findings further advance the concept of polyphosphazene immunoadjuvants as unique dual-functionality adjuvants integrating delivery and immunostimulating modalities in one water-soluble molecule.


Assuntos
Compostos Organofosforados/química , Polímeros/química , Vírus Sinciciais Respiratórios/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Células CHO , Dicroísmo Circular , Cricetulus , Ensaio de Imunoadsorção Enzimática , Humanos , Imunidade Celular/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus Sinciciais Respiratórios/metabolismo , Vacinas Virais/química , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...