Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Joint Res ; 6(12): 656-664, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29203638

RESUMO

OBJECTIVES: Emerging evidence indicates that tendon disease is an active process with inflammation that is critical to disease onset and progression. However, the key cytokines responsible for driving and sustaining inflammation have not been identified. METHODS: We performed a systematic review of the literature using MEDLINE (U.S. National Library of Medicine, Bethesda, Maryland) in March 2017. Studies reporting the expression of interleukins (ILs), tumour necrosis factor alpha (TNF-α) and interferon gamma in diseased human tendon tissues, and animal models of tendon injury or exercise in comparison with healthy control tissues were included. RESULTS: IL-1ß, IL-6, IL-10, and TNF-α are the cytokines that have been most frequently investigated. In clinical samples of tendinopathy and tendon tears, the expression of TNF-α tended not to change but IL-6 increased in tears. Healthy human tendons showed increased IL-6 expression after exercise; however, IL-10 remained unchanged. Animal tendon injury models showed that IL-1ß, IL-6, and TNF-α tend to increase from the early phase of tendon healing. In animal exercise studies, IL-1ß expression showed a tendency to increase at the early stage after exercise, but IL-10 expression remained unchanged with exercise. CONCLUSIONS: This review highlights the roles of IL-1ß, IL-6, IL-10, and TNF-α in the development of tendon disease, during tendon healing, and in response to exercise. However, there is evidence accumulating that suggests that other cytokines are also contributing to tendon inflammatory processes. Further work with hypothesis-free methods is warranted in order to identify the key cytokines, with subsequent mechanistic and interaction studies to elucidate their roles in tendon disease development.Cite this article: W. Morita, S. G. Dakin, S. J. B. Snelling, A. J. Carr. Cytokines in tendon disease: A Systematic Review. Bone Joint Res 2017;6:656-664. DOI: 10.1302/2046-3758.612.BJR-2017-0112.R1.

2.
Eur Cell Mater ; 31: 107-18, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26815643

RESUMO

Surgical repairs of rotator cuff tears have high re-tear rates and many scaffolds have been developed to augment the repair. Understanding the interaction between patients' cells and scaffolds is important for improving scaffold performance and tendon healing. In this in vitro study, we investigated the response of patient-derived tenocytes to eight different scaffolds. Tested scaffolds included X-Repair, Poly-Tape, LARS Ligament, BioFiber (synthetic scaffolds), BioFiber-CM (biosynthetic scaffold), GraftJacket, Permacol, and Conexa (biological scaffolds). Cell attachment, proliferation, gene expression, and morphology were assessed. After one day, more cells attached to synthetic scaffolds with dense, fine and aligned fibres (X-Repair and Poly-Tape). Despite low initial cell attachment, the human dermal scaffold (GraftJacket) promoted the greatest proliferation of cells over 13 days. Expression of collagen types I and III were upregulated in cells grown on non-cross-linked porcine dermis (Conexa). Interestingly, the ratio of collagen I to collagen III mRNA was lower on all dermal scaffolds compared to synthetic and biosynthetic scaffolds. These findings demonstrate significant differences in the response of patient-derived tendon cells to scaffolds that are routinely used for rotator cuff surgery. Synthetic scaffolds promoted increased cell adhesion and a tendon-like cellular phenotype, while biological scaffolds promoted cell proliferation and expression of collagen genes. However, no single scaffold was superior. Our results may help understand the way that patients' cells interact with scaffolds and guide the development of new scaffolds in the future.


Assuntos
Procedimentos Ortopédicos/métodos , Traumatismos dos Tendões/cirurgia , Tendões/citologia , Alicerces Teciduais , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Colágeno Tipo I/biossíntese , Colágeno Tipo I/genética , Colágeno Tipo III/biossíntese , Colágeno Tipo III/genética , Humanos , RNA Mensageiro/genética , Manguito Rotador/cirurgia , Lesões do Manguito Rotador , Cicatrização/fisiologia
3.
Osteoarthritis Cartilage ; 24(5): 883-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26687825

RESUMO

OBJECTIVE: Dickkopf-3 (Dkk3) is a non-canonical member of the Dkk family of Wnt antagonists and its upregulation has been reported in microarray analysis of cartilage from mouse models of osteoarthritis (OA). In this study we assessed Dkk3 expression in human OA cartilage to ascertain its potential role in chondrocyte signaling and cartilage maintenance. METHODS: Dkk3 expression was analysed in human adult OA cartilage and synovial tissues and during chondrogenesis of ATDC5 and human mesenchymal stem cells. The role of Dkk3 in cartilage maintenance was analysed by incubation of bovine and human cartilage explants with interleukin-1ß (IL1ß) and oncostatin-M (OSM). Dkk3 gene expression was measured in cartilage following murine hip avulsion. Whether Dkk3 influenced Wnt, TGFß and activin cell signaling was assessed in primary human chondrocytes and SW1353 chondrosarcoma cells using qRT-PCR and luminescence assays. RESULTS: Increased gene and protein levels of Dkk3 were detected in human OA cartilage, synovial tissue and synovial fluid. DKK3 gene expression was decreased during chondrogenesis of both ATDC5 cells and humans MSCs. Dkk3 inhibited IL1ß and OSM-mediated proteoglycan loss from human and bovine cartilage explants and collagen loss from bovine cartilage explants. Cartilage DKK3 expression was decreased following hip avulsion injury. TGFß signaling was enhanced by Dkk3 whilst Wnt3a and activin signaling were inhibited. CONCLUSIONS: We provide evidence that Dkk3 is upregulated in OA and may have a protective effect on cartilage integrity by preventing proteoglycan loss and helping to restore OA-relevant signaling pathway activity. Targeting Dkk3 may be a novel approach in the treatment of OA.


Assuntos
Cartilagem Articular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Osteoartrite/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Células Cultivadas , Quimiocinas , Condrogênese/fisiologia , Relação Dose-Resposta a Droga , Regulação para Baixo/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...