Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2405430, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923003

RESUMO

Thermochromic materials are substances that change colour in response to temperature variations. Today, sustainability concerns are the main drivers of thermochromic research, with smart, energy efficient windows being one of primary applications. While vanadium oxides and leuco dyes are traditionally the main thermochromic materials, hydrogels operating based on change of solvation have risen as some of the most promising materials due to their high optical transparency and good solar modulating abilities. In this work, a distinct mechanism for thermochromism arising from the crystalline solid to amorphous solid polymer transition, with a corresponding transition from an opaque state to a transparent state is disclosed. Both ultra-high optical transparency (Tlum up to 99%) and ultra-high solar modulation (ΔTsolar up to 87%) were observed. The transition temperature was tunable from 11 to 61 ͦ C by tuning the polymer structure. When incorporated into applications such as greenhouse materials and thermoelectric devices, significant performance enhancement was observed, due to the thermochromic material functioning as a thermal valve, speeding up solar heat absorbance while inhibiting the cooling process via its phase transition. This article is protected by copyright. All rights reserved.

2.
J Colloid Interface Sci ; 635: 197-207, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36587573

RESUMO

HYPOTHESIS: Underwater oil-repellency of polyelectrolyte brushes has been attributed mainly to electric double-layer repulsion forces based on Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Many non-polyelectrolyte materials also exhibit oil-repellent behaviour, but it is not clear if there exist similar electric double-layer repulsion and if it is the sole mechanism governing their underwater oil-repellency. EXPERIMENTS/SIMULATIONS: In this article, the oil-repellency of highly amorphous cellulose exhibiting is investigated in detail, through experiments and molecular dynamics simulations (MDS). FINDINGS: It was found that the stable surface hydration on regenerated cellulose was due to a combination of long-range electrostatic repulsions (DLVO theory) and short-range interfacial hydrogen bonding between cellulose and water molecules (as revealed by MDS). The presence of a stable water layer of about 200 nm thick (similar to that of polyelectrolyte brushes) was confirmed. Such stable surface hydration effectively separates cellulose surface from oil droplets, resulting in extremely low adhesion between them. As a demonstration of its practicality, regenerated cellulose membranes were fabricated via electrospinning, and they exhibit high oil/water separation efficiencies (including oil-in-water emulsions) as well as self-cleaning ability.

3.
ACS Appl Mater Interfaces ; 13(34): 41182-41189, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424661

RESUMO

An aqueous suspension of silica nanoparticles or nanofluid can alter the wettability of surfaces, specifically by making them hydrophilic and oil-repellent under water. Wettability alteration by nanofluids has important technological applications, including for enhanced oil recovery and heat transfer processes. A common way to characterize the wettability alteration is by measuring the contact angles of an oil droplet with and without nanoparticles. While easy to perform, contact angle measurements do not fully capture the wettability changes to the surface. Here, we employed several complementary techniques, such as cryo-scanning electron microscopy, confocal fluorescence and reflection interference contrast microscopy, and droplet probe atomic force microscopy (AFM), to visualize and quantify the wettability alterations by fumed silica nanoparticles. We found that nanoparticles adsorbed onto glass surfaces to form a porous layer with hierarchical micro- and nanostructures. The porous layer can trap a thin water film, which reduces contact between the oil droplet and the solid substrate. As a result, even a small addition of nanoparticles (0.1 wt %) lowers the adhesion force for a 20 µm sized oil droplet by more than 400 times from 210 ± 10 to 0.5 ± 0.3 nN as measured by using droplet probe AFM. Finally, we show that silica nanofluids can improve oil recovery rates by 8% in a micromodel with glass channels that resemble a physical rock network.

4.
Indoor Air ; 31(5): 1639-1644, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33876847

RESUMO

Facing shortages of personal protective equipment, some clinicians have advocated the use of barrier enclosures (typically mounted over the head, with and without suction) to contain aerosol emissions from coronavirus disease 2019 (COVID-19) patients. There is, however, little evidence for its usefulness. To test the effectiveness of such a device, we built a manikin that can expire micron-sized aerosols at flow rates close to physiological conditions. We then placed the manikin inside the enclosure and used a laser sheet to visualize the aerosol leaking out. We show that with sufficient suction, it is possible to effectively contain aerosol from the manikin, reducing aerosol exposure outside the enclosure by 99%. In contrast, a passive barrier without suction only reduces aerosol exposure by 60%.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Infecções/métodos , Humanos , Modelos Anatômicos , SARS-CoV-2 , Sucção/métodos
5.
ACS Appl Mater Interfaces ; 12(37): 42386-42392, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32799518

RESUMO

The functional properties of a surface, such as its anti-fogging or anti-fouling performance, are influenced by its wettability. To quantify surface wettability, the most common approach is to measure the contact angles of a liquid droplet on the surface. While well established and relatively easy to perform, contact angle measurements were developed to describe macroscopic wetting properties and are difficult to perform for submillimetric droplets. Moreover, they cannot spatially resolve surface heterogeneities that can contribute to surface fouling. To address these shortcomings, we report on using an atomic force microscopy technique to quantitatively measure the interaction forces between a microdroplet and a surface with piconewton force resolution. We show how our technique can be used to spatially map topographical and chemical heterogeneities with micron resolution.

6.
Proc Natl Acad Sci U S A ; 116(50): 25008-25012, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31772014

RESUMO

There is a huge interest in developing superrepellent surfaces for antifouling and heat-transfer applications. To characterize the wetting properties of such surfaces, the most common approach is to place a millimetric-sized droplet and measure its contact angles. The adhesion and friction forces can then be inferred indirectly using Furmidge's relation. While easy to implement, contact angle measurements are semiquantitative and cannot resolve wetting variations on a surface. Here, we attach a micrometric-sized droplet to an atomic force microscope cantilever to directly measure adhesion and friction forces with nanonewton force resolutions. We spatially map the micrometer-scale wetting properties of superhydrophobic surfaces and observe the time-resolved pinning-depinning dynamics as the droplet detaches from or moves across the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...