Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2119531119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394863

RESUMO

The RNA-binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFNs). This signal transduction occurs at endoplasmic reticulum (ER)­mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, as one of the proteins recruited to membranes at ER­mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We found that following RNA virus infection, UFL1 is recruited to the membrane-targeting protein 14­3-3ε and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, we found that 14­3-3ε has an increase in UFM1 conjugation following RIG-I activation. Additionally, loss of cellular ufmylation prevents the interaction of 14­3-3ε with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus the downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a posttranslational control for IFN induction.


Assuntos
Proteína DEAD-box 58 , Interferons , Infecções por Vírus de RNA , RNA Viral , Receptores Imunológicos , Ubiquitina-Proteína Ligases , Proteínas 14-3-3/metabolismo , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata , Interferons/metabolismo , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/imunologia , RNA Viral/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
2.
PLoS Biol ; 19(7): e3001342, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329302

RESUMO

A new study in PLOS Biology finds that interferon (IFN)-induced adenosine deaminase acting on RNA 1 (ADAR1) mRNA is N6-methyladenosine (m6A) modified to promote its translation, enabling ADAR1 to modify self-double-stranded RNAs (dsRNAs) generated during the IFN response and preventing activation of the melanoma differentiation-associated protein 5 (MDA5)-mediated host antiviral response.


Assuntos
Adenosina Desaminase , RNA de Cadeia Dupla , Adenosina , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Interferons/metabolismo , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
mSphere ; 5(3)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404510

RESUMO

Type I interferons (IFN) initiate an antiviral state through a signal transduction cascade that leads to the induction of hundreds of IFN-stimulated genes (ISGs) to restrict viral infection. Recently, RNA modifications on both host and viral RNAs have been described as regulators of infection. However, the impact of host mRNA cap modifications on the IFN response and how this regulates viral infection are unknown. Here, we reveal that CMTR1, an ISG that catalyzes 2'-O-methylation of the first transcribed nucleotide in cellular mRNA (Cap 1), promotes the protein expression of specific ISGs that contribute to the antiviral response. Depletion of CMTR1 reduces the IFN-induced protein levels of ISG15, MX1, and IFITM1, without affecting their transcript abundance. However, CMTR1 depletion does not significantly affect the IFN-induced protein or transcript abundance of IFIT1 and IFIT3. Importantly, knockdown of IFIT1, which acts with IFIT3 to inhibit the translation of RNAs lacking Cap 1 2'-O-methylation, restores protein expression of ISG15, MX1, and IFITM1 in cells depleted of CMTR1. Finally, we found that CMTR1 plays a role in restricting RNA virus replication, likely by ensuring the expression of specific antiviral ISGs. Taken together, these data reveal that CMTR1 is required to establish an antiviral state by ensuring the protein expression of a subset of ISGs during the type I IFN response.IMPORTANCE Induction of an efficient type I IFN response is important to control viral infection. We show that the host 2'-O-methyltransferase CMTR1 facilitates the protein expression of ISGs in human cells by preventing IFIT1 from inhibiting the translation of those mRNAs lacking cap 2'-O-methylation. Thus, CMTR1 promotes the IFN-mediated antiviral response.


Assuntos
Regulação da Expressão Gênica/imunologia , Interferon Tipo I/imunologia , Metiltransferases/genética , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular , Células HEK293 , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metilação , Biossíntese de Proteínas , Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células THP-1 , Replicação Viral/imunologia
4.
J Biol Chem ; 294(39): 14231-14240, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31375559

RESUMO

Innate immune detection of viral nucleic acids during viral infection activates a signaling cascade that induces type I and type III IFNs as well as other cytokines, to generate an antiviral response. This signaling is initiated by pattern recognition receptors, such as the RNA helicase retinoic acid-inducible gene I (RIG-I), that sense viral RNA. These sensors then interact with the adaptor protein mitochondrial antiviral signaling protein (MAVS), which recruits additional signaling proteins, including TNF receptor-associated factor 3 (TRAF3) and TANK-binding kinase 1 (TBK1), to form a signaling complex that activates IFN regulatory factor 3 (IRF3) for transcriptional induction of type I IFNs. Here, using several immunological and biochemical approaches in multiple human cell types, we show that the GTPase-trafficking protein RAB1B up-regulates RIG-I pathway signaling and thereby promotes IFN-ß induction and the antiviral response. We observed that RAB1B overexpression increases RIG-I-mediated signaling to IFN-ß and that RAB1B deletion reduces signaling of this pathway. Additionally, loss of RAB1B dampened the antiviral response, indicated by enhanced Zika virus infection of cells depleted of RAB1B. Importantly, we identified the mechanism of RAB1B action in the antiviral response, finding that it forms a protein complex with TRAF3 to facilitate the interaction of TRAF3 with mitochondrial antiviral signaling protein. We conclude that RAB1B regulates TRAF3 and promotes the formation of innate immune signaling complexes in response to nucleic acid sensing during RNA virus infection.


Assuntos
Imunidade Inata , Fator 3 Associado a Receptor de TNF/metabolismo , Infecção por Zika virus/imunologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Animais , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Células HEK293 , Humanos , Interferon beta/metabolismo , Ligação Proteica , Receptores Imunológicos , Transdução de Sinais , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...