Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(6): e38806, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761706

RESUMO

Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N.


Assuntos
Biomassa , Conservação dos Recursos Naturais , Ecossistema , Ciclo do Nitrogênio/fisiologia , Nitrogênio/metabolismo , Caramujos/fisiologia , Animais , Rios , Trinidad e Tobago
2.
Mol Ecol ; 20(3): 601-18, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21199028

RESUMO

Diversification of freshwater fishes on islands is considered unlikely because the traits that enable successful colonization-specifically, broad salinity tolerances and the potential for oceanic dispersal-may also constrain post-colonization genetic differentiation. Some secondary freshwater fish, however, exhibit pronounced genetic differentiation and geographic structure on islands, whereas others do not. It is unclear what conditions give rise to contrasting patterns of differentiation because few comparative reconstructions of population history have been carried out for insular freshwater fishes. In this study, we examined the phylogeography of Hart's killifish (Rivulus hartii) across Trinidad, with reference to neighboring islands and northern South America, to test hypotheses of colonization and differentiation derived from comparable work on co-occurring guppies (Poecilia reticulata). Geographic patterns of mitochondrial DNA haplotype variation and microsatellite genotype variation provide evidence of genetic differentiation of R. hartii among islands and across Trinidad. Our findings are largely consistent with patterns of geographically structured ancestry and admixture found in Trinidadian guppies, which suggests that both species share a history of colonization and differentiation and that post-colonization diversification may be more common among members of insular freshwater fish assemblages than has been previously thought.


Assuntos
Ciprinodontiformes/genética , DNA Mitocondrial/genética , Especiação Genética , Animais , Ciprinodontiformes/classificação , DNA Mitocondrial/química , Água Doce , Variação Genética , Haplótipos , Repetições de Microssatélites/genética , Filogeografia , Poecilia/classificação , Poecilia/genética , Dinâmica Populacional , Trinidad e Tobago , Índias Ocidentais
3.
Ecology ; 89(7): 1961-71, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18705382

RESUMO

Immigration, emigration, migration, and redistribution describe processes that involve movement of individuals. These movements are an essential part of contemporary ecological models, and understanding how movement is affected by biotic and abiotic factors is important for effectively modeling ecological processes that depend on movement. We asked how phenotypic heterogeneity (body size) and environmental heterogeneity (food resource level) affect the movement behavior of an aquatic snail (Tarebia granifera), and whether including these phenotypic and environmental effects improves advection-diffusion models of movement. We postulated various elaborations of the basic advection diffusion model as a priori working hypotheses. To test our hypotheses we measured individual snail movements in experimental streams at high- and low-food resource treatments. Using these experimental movement data, we examined the dependency of model selection on resource level and body size using Akaike's Information Criterion (AIC). At low resources, large individuals moved faster than small individuals, producing a platykurtic movement distribution; including size dependency in the model improved model performance. In stark contrast, at high resources, individuals moved upstream together as a wave, and body size differences largely disappeared. The model selection exercise indicated that population heterogeneity is best described by the advection component of movement for this species, because the top-ranked model included size dependency in advection, but not diffusion. Also, all probable models included resource dependency. Thus population and environmental heterogeneities both influence individual movement behaviors and the population-level distribution kernels, and their interaction may drive variation in movement behaviors in terms of both advection rates and diffusion rates. A behaviorally informed modeling framework will integrate the sentient response of individuals in terms of movement and enhance our ability to accurately model ecological processes that depend on animal movement.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Caramujos/fisiologia , Animais , Tamanho Corporal , Conservação dos Recursos Naturais , Modelos Biológicos , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...