Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1413: 139-154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195530

RESUMO

The structure of the mammalian lung controls the flow of air through the airways and into the distal alveolar region where gas exchange occurs. Specialized cells in the lung mesenchyme produce the extracellular matrix (ECM) and growth factors required for lung structure. Historically, characterizing the mesenchymal cell subtypes was challenging due to their ambiguous morphology, overlapping expression of protein markers, and limited cell-surface molecules needed for isolation. The recent development of single-cell RNA sequencing (scRNA-seq) complemented with genetic mouse models demonstrated that the lung mesenchyme comprises transcriptionally and functionally heterogeneous cell-types. Bioengineering approaches that model tissue structure clarify the function and regulation of mesenchymal cell types. These experimental approaches demonstrate the unique abilities of fibroblasts in mechanosignaling, mechanical force generation, ECM production, and tissue regeneration. This chapter will review the cell biology of the lung mesenchyme and experimental approaches to study their function.


Assuntos
Matriz Extracelular , Pulmão , Camundongos , Animais , Pulmão/metabolismo , Matriz Extracelular/fisiologia , Fibroblastos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/metabolismo , Mamíferos
2.
Cells ; 10(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525562

RESUMO

Lithium salts have been in the therapeutic toolbox for better or worse since the 19th century, with purported benefit in gout, hangover, insomnia, and early suggestions that lithium improved psychiatric disorders. However, the remarkable effects of lithium reported by John Cade and subsequently by Mogens Schou revolutionized the treatment of bipolar disorder. The known molecular targets of lithium are surprisingly few and include the signaling kinase glycogen synthase kinase-3 (GSK-3), a group of structurally related phosphomonoesterases that includes inositol monophosphatases, and phosphoglucomutase. Here we present a brief history of the therapeutic uses of lithium and then focus on GSK-3 as a therapeutic target in diverse diseases, including bipolar disorder, cancer, and coronavirus infections.


Assuntos
Antimaníacos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Compostos de Lítio/uso terapêutico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Animais , Antimaníacos/farmacologia , Transtorno Bipolar/metabolismo , Coronavirus/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Compostos de Lítio/farmacologia , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Neurosci Lett ; 704: 67-72, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-30940476

RESUMO

Chronic lithium treatment stimulates adult hippocampal neurogenesis, but whether increased neurogenesis contributes to its therapeutic mechanism remains unclear. We use a genetic model of neural progenitor cell (NPC) ablation to test whether a lithium-sensitive behavior requires hippocampal neurogenesis. NPC-ablated mice were treated with lithium and assessed in the forced swim test (FST). Lithium reduced time immobile in the FST in NPC-ablated and control mice but had no effect on activity in the open field, a control for the locomotion-based FST. These findings show that hippocampal NPCs that proliferate in response to chronic lithium are not necessary for the behavioral response to lithium in the FST. We further show that 4-6 week old immature hippocampal neurons are not required for this response. These data suggest that increased hippocampal neurogenesis does not contribute to the response to lithium in the forced swim test and may not be an essential component of its therapeutic mechanism.


Assuntos
Hipocampo/efeitos dos fármacos , Compostos de Lítio/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Células-Tronco Neurais/citologia , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/fisiologia , Natação
4.
Dev Biol ; 414(2): 161-9, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27141870

RESUMO

The commitment and differentiation of the alveolar type I (AT1) cell lineage is a critical step for the formation of distal lung saccules, which are the primitive alveolar units required for postnatal respiration. How AT1 cells arise from the distal lung epithelial progenitor cells prior to birth and whether this process depends on a developmental niche instructed by mesenchymal cells is poorly understood. We show that mice lacking histone deacetylase 3 specifically in the developing lung mesenchyme display lung hypoplasia including decreased mesenchymal proliferation and a severe impairment of AT1 cell differentiation. This is correlated with a decrease in Wnt/ß-catenin signaling in the lung epithelium. We demonstrate that inhibition of Wnt signaling causes defective AT1 cell lineage differentiation ex vivo. Importantly, systemic activation of Wnt signaling at specific stages of lung development can partially rescue the AT1 cell differentiation defect in vivo. These studies show that histone deacetylase 3 expression generates an important developmental niche in the lung mesenchyme through regulation of Wnt signaling, which is required for proper AT1 cell differentiation and lung sacculation.


Assuntos
Células Epiteliais Alveolares/fisiologia , Histona Desacetilases/fisiologia , Alvéolos Pulmonares/embriologia , Nicho de Células-Tronco/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular , Endoderma/citologia , Genes Letais , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Cloreto de Lítio/farmacologia , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/anormalidades , Via de Sinalização Wnt/efeitos dos fármacos
5.
Development ; 142(1): 108-17, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25516972

RESUMO

The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation.


Assuntos
Linhagem da Célula , Endoderma/citologia , Endoderma/embriologia , Pulmão/citologia , Pulmão/embriologia , Complexo Repressor Polycomb 2/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Proteínas Hedgehog/metabolismo , Queratina-5/metabolismo , Pulmão/metabolismo , Camundongos , Mutação/genética , Células Neuroendócrinas/citologia , Células Neuroendócrinas/metabolismo , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/metabolismo , Software , Fator Nuclear 1 de Tireoide , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
6.
Nat Med ; 15(12): 1383-91, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19966778

RESUMO

Macrophages show endoplasmic reticulum (ER) stress when exposed to lipotoxic signals associated with atherosclerosis, although the pathophysiological importance and the underlying mechanisms of this phenomenon remain unknown. Here we show that mitigation of ER stress with a chemical chaperone results in marked protection against lipotoxic death in macrophages and prevents macrophage fatty acid-binding protein-4 (aP2) expression. Using genetic and chemical models, we show that aP2 is the predominant regulator of lipid-induced macrophage ER stress. The absence of lipid chaperones incites an increase in the production of phospholipids rich in monounsaturated fatty acids and bioactive lipids that render macrophages resistant to lipid-induced ER stress. Furthermore, the impact of aP2 on macrophage lipid metabolism and the ER stress response is mediated by upregulation of key lipogenic enzymes by the liver X receptor. Our results demonstrate the central role for lipid chaperones in regulating ER homeostasis in macrophages in atherosclerosis and show that ER responses can be modified, genetically or chemically, to protect the organism against the deleterious effects of hyperlipidemia.


Assuntos
Aterosclerose/prevenção & controle , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Humanos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...