Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861761

RESUMO

Hereditary haemorrhagic telangiectasia (HHT) causes arteriovenous malformations (AVMs) in multiple organs to cause bleeding, neurological and other complications. HHT is caused by mutations in the BMP co-receptor endoglin. We characterised a range of vascular phenotypes in embryonic and adult endoglin mutant zebrafish and the effect of inhibiting different pathways downstream of Vegf signalling. Adult endoglin mutant zebrafish developed skin AVMs, retinal vascular abnormalities and cardiac enlargement. Embryonic endoglin mutants developed an enlarged basilar artery (similar to the previously described enlarged aorta and cardinal vein) and larger numbers of endothelial membrane cysts (kugeln) on cerebral vessels. Vegf inhibition prevented these embryonic phenotypes, leading us to investigate specific Vegf signalling pathways. Inhibiting mTOR or MEK pathways prevented abnormal trunk and cerebral vasculature phenotypes, whereas inhibiting Nos or Mapk pathways had no effect. Combined subtherapeutic mTOR and MEK inhibition prevented vascular abnormalities, confirming synergy between these pathways in HHT. These results indicate that the HHT-like phenotype in zebrafish endoglin mutants can be mitigated through modulation of Vegf signalling. Combined low-dose MEK and mTOR pathway inhibition could represent a novel therapeutic strategy in HHT.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Animais , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Telangiectasia Hemorrágica Hereditária/genética , Peixe-Zebra/metabolismo , Endoglina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Malformações Arteriovenosas/genética , Serina-Treonina Quinases TOR , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Receptores de Activinas Tipo II/genética , Mutação/genética
2.
Genes (Basel) ; 12(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513792

RESUMO

Hereditary haemorrhagic telangiectasia (HHT) is characterised by arteriovenous malformations (AVMs). These vascular abnormalities form when arteries and veins directly connect, bypassing the local capillary system. Large AVMs may occur in the lungs, liver and brain, increasing the risk of morbidity and mortality. Smaller AVMs, known as telangiectases, are prevalent on the skin and mucosal lining of the nose, mouth and gastrointestinal tract and are prone to haemorrhage. HHT is primarily associated with a reduction in endoglin (ENG) or ACVRL1 activity due to loss-of-function mutations. ENG and ACVRL1 transmembrane receptors are expressed on endothelial cells (ECs) and bind to circulating ligands BMP9 and BMP10 with high affinity. Ligand binding to the receptor complex leads to activation of the SMAD1/5/8 signalling pathway to regulate downstream gene expression. Various genetic animal models demonstrate that disruption of this pathway in ECs results in AVMs. The vascular abnormalities underlying AVM formation result from abnormal EC responses to angiogenic and haemodynamic cues, and include increased proliferation, reduced migration against the direction of blood flow and an increased EC footprint. There is growing evidence that targeting VEGF signalling has beneficial outcomes in HHT patients and in animal models of this disease. The anti-VEGF inhibitor bevacizumab reduces epistaxis and has a normalising effect on high cardiac output in HHT patients with hepatic AVMs. Blocking VEGF signalling also reduces vascular malformations in mouse models of HHT1 and HHT2. However, VEGF signalling is complex and drives numerous downstream pathways, and it is not yet clear which pathway (or combination of pathways) is critical to target. This review will consider the recent evidence gained from HHT clinical and preclinical studies that are increasing our understanding of HHT pathobiology and informing therapeutic strategies.


Assuntos
Predisposição Genética para Doença , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Telangiectasia Hemorrágica Hereditária/genética , Alelos , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Gerenciamento Clínico , Células Endoteliais/metabolismo , Medicina Baseada em Evidências , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Humanos , Mutação , Fenótipo , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...