Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Radiat Oncol ; 47: 100797, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831754

RESUMO

Background and purpose: Treatment planning for MR-guided stereotactic body radiotherapy (SBRT) for pancreatic tumors can be challenging, leading to a wide variation of protocols and practices. This study aimed to harmonize treatment planning by developing a consensus planning protocol for MR-guided pancreas SBRT on a 1.5 T MR-Linac. Materials and methods: A consortium was founded of thirteen centers that treat pancreatic tumors on a 1.5 T MR-Linac. A phased planning exercise was conducted in which centers iteratively created treatment plans for two cases of pancreatic cancer. Each phase was followed by a meeting where the instructions for the next phase were determined. After three phases, a consensus protocol was reached. Results: In the benchmarking phase (phase I), substantial variation between the SBRT protocols became apparent (for example, the gross tumor volume (GTV) D99% ranged between 36.8 - 53.7 Gy for case 1, 22.6 - 35.5 Gy for case 2). The next phase involved planning according to the same basic dosimetric objectives, constraints, and planning margins (phase II), which led to a large degree of harmonization (GTV D99% range: 47.9-53.6 Gy for case 1, 33.9-36.6 Gy for case 2). In phase III, the final consensus protocol was formulated in a treatment planning system template and again used for treatment planning. This not only resulted in further dosimetric harmonization (GTV D99% range: 48.2-50.9 Gy for case 1, 33.5-36.0 Gy for case 2) but also in less variation of estimated treatment delivery times. Conclusion: A global consensus protocol has been developed for treatment planning for MR-guided pancreatic SBRT on a 1.5 T MR-Linac. Aside from harmonizing the large variation in the current clinical practice, this protocol can provide a starting point for centers that are planning to treat pancreatic tumors on MR-Linac systems.

2.
Med Phys ; 50(1): 397-409, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36210631

RESUMO

BACKGROUND: Lung stereotactic body radiotherapy (SBRT) has proven an effective treatment for medically inoperable lung tumors, even for (ultra-)central tumors. Recently, there has been growing interest in radiation-induced cardiac toxicity in lung radiotherapy. More specifically, dose to cardiac (sub-)structures (CS) was found to correlate with survival after radiotherapy. PURPOSE: Our goal is first, to investigate the percentage of patients who require CS sparing in an magnetic resonance imaging guided lung SBRT workflow, and second, to quantify how successful implementation of cardiac sparing would be. METHODS: The patient cohort consists of 34 patients with stage II-IV lung cancer who were treated with SBRT between 2017 and 2020. A mid-position computed tomography (CT) image was used to create treatment plans for the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) following clinical templates. Under guidance of a cardio-thoracic radiologist, 11 CS were contoured manually for each patient. Dose constraints for five CS were extracted from the literature. Patients were stratified according to their need for cardiac sparing depending on the CS dose in their non-CS constrained MR-linac treatment plans. Cardiac sparing treatment plans (CSPs) were then created and dosimetrically compared with their non-CS constrained treatment plan counterparts. CSPs complied with the departmental constraints and were considered successful when fulfilling all CS constraints, and partially successful if some CS constraints could be fulfilled. Predictors for the need for and feasibility of cardiac sparing were explored, specifically planning target volume (PTV) size, cranio-caudal (CC) distance, 3D distance, and in-field overlap volume histograms (iOVH). RESULTS: 47% of the patients (16 out of 34) were in need of cardiac sparing. A successful CSP could be created for 62.5% (10 out of 16) of these patients. Partially successful CSPs still complied with two to four CS constraints. No significant difference in dose to organs at risk (OARs) or targets was identified between CSPs and the corresponding non-CS constrained MR-linac plans. The need for cardiac sparing was found to correlate with distance in the CC direction between target and all of the individual CS (Mann-Whitney U-test p-values <10-6 ). iOVHs revealed that complying with dose constraints for CS is primarily determined by in-plane distance and secondarily by PTV size. CONCLUSION: We demonstrated that CS can be successfully spared in lung SBRT on the MR-linac for most of this patient cohort, without compromising doses to the tumor or to other OARs. CC distance between the target and CS can be used to predict the need for cardiac sparing. iOVHs, in combination with PTV size, can be used to predict if cardiac sparing will be successful for all constrained CS except the left ventricle.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Estudos de Viabilidade , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Pulmão , Imageamento por Ressonância Magnética/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco
3.
Artigo em Inglês | MEDLINE | ID: mdl-36090011

RESUMO

Background and purpose: Online adaptive MR-guided treatment planning workflows facilitate daily contour adaptation to the actual anatomy. Allocating contour adaptation to radiation therapists (RTTs) instead of radiation oncologists (ROs) might allow for increasing workflow efficiency. This study investigates conformity of adapted target contours provided by dedicated RTTs and ROs. Materials and methods: In a simulated online procedure, 6 RTTs and 6 ROs recontoured targets and organs at risk (OAR) in prostate cancer (n = 2), rectal cancer (n = 2) and lymph node-oligometastases (n = 2) cases. RTTs gained contouring competence beforehand by following a specific in-house training program. For all target contours and the reference delineations volumetric differences were determined and Dice similarity coefficient (DSC), conformity index (CI) and generalized CI were calculated. Delineation time and -confidence were registered for targets and OAR. Impact of contour adaptation on treatment plan quality was investigated. Results: Delineation conformity was generally high with DSC, CI and generalized CI values in the range of 0.81-0.94, 0.87-0.95 and 0.63-0.85 for prostate cancer, rectal cancer and LN-oligometastasis, respectively. Target volumes were comparable for both, RTTs and ROs. Time needed and confidence in contour adaptation was comparable as well. Treatment plans derived with adapted contours did not violate dose volume constrains as used in clinical routine. Conclusion: After tumor site specific training, daily contour adaptations as needed in adaptive online radiotherapy workflows can be accurately performed by RTTs. Conformity of the derived contours is high and comparable to contours as provided by ROs.

4.
Phys Imaging Radiat Oncol ; 23: 66-73, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814260

RESUMO

Background and purpose: Magnetic resonance (MR)-linac delivery is expected to improve organ at risk (OAR) sparing. In this study, OAR doses were compared for online adaptive MR-linac treatments and conventional cone beam computed tomography (CBCT)-linac radiotherapy, taking into account differences in clinical workflows, especially longer session times for MR-linac delivery. Materials and methods: For 25 patients with pelvic/abdominal lymph node oligometastases, OAR doses were calculated for clinical pre-treatment and daily optimized 1.5 T MR-linac treatment plans (5 × 7 Gy) and compared with simulated CBCT-linac plans for the pre-treatment and online anatomical situation. Bowelbag and duodenum were re-contoured on MR-imaging acquired before, during and after each treatment session. OAR hard constraint violations, D0.5cc and D10cc values were evaluated, focusing on bowelbag and duodenum. Results: Overall, hard constraints for all OAR were violated less often in daily online MR-linac treatment plans compared with CBCT-linac: in 5% versus 22% of fractions, respectively. D0.5cc and D10cc values did not differ significantly. When taking treatment duration and intrafraction motion into account, estimated delivered doses to bowelbag and duodenum were lower with CBCT-linac if identical planning target volume (PTV) margins were used for both modalities. When reduced PTV margins were achievable with MR-linac treatment, bowelbag doses were lower compared with CBCT-linac. Conclusions: Compared with CBCT-linac treatments, the online adaptive MR-linac approach resulted in fewer hard planning constraint violations compared with single-plan CBCT-linac delivery. With respect to other bowelbag/duodenum dose-volume parameters, the longer duration of MR-linac treatment sessions negatively impacts the potential dosimetric benefit of daily adaptive treatment planning.

5.
Radiother Oncol ; 154: 243-248, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949691

RESUMO

PURPOSE: At our department, MR-guided stereotactic body radiation therapy (SBRT) using the 1.5T MR-linac system (Unity, Elekta AB, Stockholm, Sweden) has been initiated for patients with lymph node oligometastases. Superior soft tissue contrast and the possibility for online plan adaptation on the Unity may allow for hypofractionated treatment. The purpose of this study was to investigate the dosimetric feasibility and compare the plan quality of different hypofractionated schemes. METHODS AND MATERIALS: Data was used from 12 patients with single lymph node oligometastases (10 pelvic, 2 para-aortic), which were all treated on the Unity with a prescribed dose of 5x7 Gy to 95% of the PTV. Hypofractionation was investigated for 3x10 Gy and 1x20 Gy schemes (all 60 Gy BED α/ß = 10). The pre-treatment plans were evaluated based on dose criteria and plan quality. If all criteria were met, the number of online adapted plans which also met all dose criteria was investigated. For pre-treatment plans meeting the criteria for all three fractionation schemes, the plan quality after online adaptation was compared using the four parameters described in the NRG-BR001 phase 1 trial. RESULTS: Pre-treatment plans met all clinical criteria for the three different fractionation schemes in 10, 9 and 6 cases. 50/50, 45/45 17/30 of the corresponding online adapted plans met all criteria, respectively. Violations were primarily caused by surrounding organs at risk overlapping or adjacent to the PTV. The 1x20 Gy treatment plans were, in general, of lesser quality than the 5x7 Gy and 3x10 Gy plans. CONCLUSION: Hypofractionated radiotherapy for lymph node oligometastases on the 1.5T MR-linac is feasible based on dose criteria and plan quality metrics. The location of the target relative to critical structures should be considered in choosing the most suitable fractionation scheme. Especially for single fraction treatment, meeting all dose criteria in the pre-treatment situation does not guarantee that this also applies during online treatment.


Assuntos
Radiocirurgia , Estudos de Viabilidade , Humanos , Linfonodos , Imageamento por Ressonância Magnética , Hipofracionamento da Dose de Radiação , Planejamento da Radioterapia Assistida por Computador , Suécia
6.
Radiother Oncol ; 146: 118-125, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32146257

RESUMO

BACKGROUND AND PURPOSE: Patients were treated at our institute for single and multiple lymph node oligometastases on the 1.5T MR-linac since August 2018. The superior soft-tissue contrast and additional software features of the MR-linac compared to CBCT-linacs allow for online adaptive treatment planning. The purpose of this study was to perform a target coverage and dose criteria based evaluation of the clinically delivered online adaptive radiotherapy treatment compared with conventional CBCT-linac treatment. MATERIALS AND METHODS: Patient data was used from 14 patients with single lymph node oligometastases and 6 patients with multiple (2-3) metastases. All patients were treated on the 1.5T MR-linac with a prescribed dose of 5 × 7 Gy to 95% of the PTV and a CBCT-linac plan was created for each patient. The difference in target coverage between these plans was compared and plans were evaluated based on dose criteria for each fraction after calculating the CBCT-plan on the daily anatomy. The GTV coverage was evaluated based on the online planning and the post-delivery MRI. RESULTS: For both single and multiple lymph node oligometastases the GTV V35Gy had a median value of 100% for both the MR-linac plans and CBCT-plans pre- and post-delivery and did not significantly differ. The percentage of plans that met all dose constraints was improved from 19% to 84% and 20% to 67% for single and multiple lymph node cases, respectively. CONCLUSION: Target coverage and dose criteria based evaluation of the first clinical 1.5T MR-linac SBRT treatments of lymph node oligometastases compared with conventional CBCT-linac treatment shows a smaller amount of unplanned violations of high dose criteria. The GTV coverage was comparable. Benefit is primarily gained in patients treated for multiple lymph node oligometastases: geometrical deformations are accounted for, dose can be delivered in one plan and margins can be reduced.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador
7.
Clin Transl Radiat Oncol ; 18: 46-53, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31341975

RESUMO

BACKGROUND AND PURPOSE: With magnetic resonance imaging (MRI)-guided radiotherapy systems such as the 1.5T MR-linac the daily anatomy can be visualized before, during and after radiation delivery. With these treatment systems, seeing metastatic nodes with MRI and zapping them with stereotactic body radiotherapy (SBRT) comes into reach. The purpose of this study is to investigate different online treatment planning strategies and to determine the planning target volume (PTV) margin needed for adequate target coverage when treating lymph node oligometastases with SBRT on the 1.5T MR-linac. MATERIALS AND METHODS: Ten patients were treated for single pelvic or para-aortic lymph node metastases on the 1.5T MR-linac with a prescribed dose of 5x7Gy with a 3 mm isotropic GTV- PTV margin. Based on the daily MRI and actual contours, a completely new treatment plan was generated for each session (adapt to shape, ATS). These were compared with plans optimized on pre-treatment CT contours after correcting for the online target position (adapt to position, ATP). At the end of each treatment session, a post-radiation delivery MRI was acquired on which the GTV was delineated to evaluate the GTV coverage and PTV margins. RESULTS: The median PTV V35Gy was 99.9% [90.7-100%] for the clinically delivered ATS plans compared to 93.6% [76.3-99.7%] when using ATP. The median GTV V35Gy during radiotherapy delivery was 100% [98-100%] on the online planning and post-delivery MRIs for ATS and 100% [93.9-100%] for ATP, respectively. The applied 3 mm isotropic PTV margin is considered adequate. CONCLUSION: For pelvic and para-aortic metastatic lymph nodes, online MRI-guided adaptive treatment planning results in adequate PTV and GTV coverage when taking the actual patient anatomy into account (ATS). Generally, GTV coverage remained adequate throughout the treatment session for both adaptive planning strategies. "Seeing and zapping" metastatic lymph nodes comes within reach for MRI-guided SBRT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...