Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Microorganisms ; 11(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36985213

RESUMO

Phragmites australis is a cosmopolitan grass species common in wetland ecosystems across the world. In much of North America, the non-native subspecies of Phragmites threatens wetland biodiversity, hinders recreation, and is a persistent problem for natural resource managers. In other parts of the world, populations are in decline, as Reed Die-Back Syndrome (RDBS) plagues some Phragmites stands in its native range. RDBS is defined by a clumped growth form, stunted root and shoot growth, premature senescence, and shoot death. RDBS has been associated with a build-up of short-chain fatty acids (SCFAs) and altered bacterial and oomycete communities in soils, but the exact causes are unknown. To control invasive Phragmites populations, we sought to develop treatments that mimic the conditions of RDBS. We applied various SCFA treatments at various concentrations to mesocosm soils growing either Phragmites or native wetland plants. We found that the high-concentration SCFA treatments applied weekly induced strong significant declines in above- and belowground biomass of Phragmites. Declines were significant but slightly weaker in native species. In addition, soil bacterial abundance increased, diversity decreased, and bacterial community composition significantly differed following treatments, such that treated pots maintained a higher relative abundance of Pseudomonadaceae and fewer Acidobacteriaceae than untreated pots. Our results suggest that application of SCFAs to Phragmites can lead to stunted plants and altered soil bacterial communities similar to populations affected by RDBS. However, the lack of species-specificity and intensive application rate may not make this treatment ideal as a widespread management tool.

2.
Ecol Appl ; 32(4): e2565, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35138659

RESUMO

Plant-soil feedbacks (PSFs) mediate plant community dynamics and may plausibly facilitate plant invasions. Microbially mediated PSFs are defined by plant effects on soil microbes and subsequent changes in plant performance (responses), both positive and negative. For microbial interactions to benefit invasive plants disproportionately, native and invasive plants must either (1) have different effects on and responses to soil microbial communities or (2) only respond differently to similar microbial communities. In other words, invasive plants do not need to cultivate different microbial communities than natives if they respond differently to them. However, effects and responses are not often explored separately, making it difficult to determine the underlying causes of performance differences. We performed a reciprocal-transplant PSF experiment with multiple microbial inhibition treatments to determine how native and non-native lineages of Phragmites australis affect and respond to soil bacteria, fungi, and oomycetes. Non-native Phragmites is a large, fast-growing, cosmopolitan invasive plant, whereas the North American native variety is comparatively smaller, slower growing, and typically considered a desirable wetland plant. We identified the effects of each plant lineage on soil microbes using DNA meta-barcoding and linked plant responses to microbial communities. Both Phragmites lineages displayed equally weak, insignificant PSFs. We found evidence of slight differential effects on microbial community composition, but no significant differential plant responses. Soils conditioned by each lineage differed only slightly in bacterial community composition, but not in fungal composition. Additionally, native and non-native Phragmites lineages did not significantly differ in their response to similar soil microbial communities. Neither lineage appreciably differed when plant biomass was compared between those grown in sterile and live soils. Targeted microbial inhibitor treatments revealed both lineages were negatively impacted by soil bacteria, but the negative response was stronger in non-native Phragmites. These observations were opposite of expectations from invasion theory and imply that the success of non-native Phragmites, relative to the native lineage, does not result from its interaction with soil microorganisms. More broadly, quantifying plant effects on, and responses to soil microbes separately provides detailed and nuanced insight into plant-microbial interactions and their role in invasions, which could inform management outcomes for invasive plants.


Assuntos
Poaceae , Solo , Bactérias , Plantas , Poaceae/microbiologia , Microbiologia do Solo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...