Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37816584

RESUMO

Defects in ribosomal biogenesis profoundly affect organismal development and cellular function, and these ribosomopathies produce a variety of phenotypes. One ribosomopathy, Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, pancreatic exocrine insufficiency, and skeletal anomalies. SDS results from biallelic mutations in SBDS, which encodes a ribosome assembly factor. Some individuals express a missense mutation, SBDS R126T , along with the common K62X mutation. We reported that the sbds-null zebrafish phenocopies much of SDS. We further showed activation of Tp53-dependent pathways before the fish died during the larval stage. Here, we expressed SBDS R126T as a transgene in the sbds -/- background. We showed that one copy of the SBDS R126T transgene permitted the establishment of maternal zygotic sbds-null fish which produced defective embryos with cdkn1a up-regulation, a Tp53 target involved in cell cycle arrest. None survived beyond 3 dpf. However, two copies of the transgene resulted in normal development and lifespan. Surprisingly, neutropenia persisted. The surviving fish displayed suppression of female sex differentiation, a stress response in zebrafish. To evaluate the role of Tp53 in the pathogenesis of sbds -/- fish phenotype, we bred the fish with a DNA binding deficient allele, tp53 M214K Expression of the loss-of-function tp53 M214K did not rescue neutropenia or survival in sbds-null zebrafish. Increased expression of cdkn1a was abrogated in the tp53 M214K/M214K ;sbds -/- fish. We conclude that the amount of SBDSR126T protein is important for development, inactivation of Tp53 fails to rescue neutropenia or survival in the sbds-null background, and cdkn1a up-regulation was dependent on WT tp53 We hypothesize that additional pathways are involved in the pathophysiology of SDS.


Assuntos
Doenças da Medula Óssea , Lipomatose , Neutropenia , Animais , Feminino , Peixe-Zebra/genética , Lipomatose/genética , Lipomatose/metabolismo , Lipomatose/patologia , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/metabolismo , Doenças da Medula Óssea/patologia , Proteínas/genética , Proteínas Nucleares/genética , Proteínas de Peixe-Zebra/genética
2.
FASEB J ; 37(10): e23199, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37732601

RESUMO

Prostaglandin E2 (PGE2 ) has been implicated in counteracting fibroblast differentiation by TGFß1 during pulmonary fibrosis. However, the precise mechanism is not well understood. We show here that PGE2 via EP2 R and EP4 R inhibits the expression of mechanosensory molecules Lysyl Oxidase Like 2 (LOXL2), myocardin-related transcription factor A (MRTF-A), ECM proteins, plasminogen activation inhibitor 1 (PAI-1), fibronectin (FN), α-smooth muscle actin (α-SMA), and redox sensor (nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4)) required for TGFß1-mediated fibroblast differentiation. We further demonstrate that PGE2 inhibits fibrotic signaling via Yes-associated protein (YAP) but does so independently from its actions on SMAD phosphorylation and conserved cylindromatosis (CYLD; deubiquitinase) expression. Mechanistically, PGE2 phosphorylates/inactivates YAP downstream of EP2 R/Gαs and restrains its translocation to the nucleus, thus inhibiting its interaction with TEA domain family members (TEADs) and transcription of fibrotic genes. Importantly, pharmacological or siRNA-mediated inhibition of YAP significantly downregulates TGFß1-mediated fibrotic gene expression and myofibroblast formation. Notably, YAP expression is upregulated in the lungs of D. farinae-treated wild type (WT) mice relative to saline-treated WT mice. Our results unravel a unique role for PGE2 -YAP interactions in fibroblast differentiation, and that PGE2 /YAP inhibition can be used as a novel therapeutic target in the treatment of pathological conditions associated with myofibroblasts like asthma.


Assuntos
Dinoprostona , Proteínas de Sinalização YAP , Animais , Camundongos , Fibroblastos , Transdução de Sinais , Miofibroblastos
3.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32759502

RESUMO

Shwachman-Diamond syndrome (SDS) is characterized by exocrine pancreatic insufficiency, neutropenia, and skeletal abnormalities. Biallelic mutations in SBDS, which encodes a ribosome maturation factor, are found in 90% of SDS cases. Sbds-/- mice are embryonic lethal. Using CRISPR/Cas9 editing, we created sbds-deficient zebrafish strains. Sbds protein levels progressively decreased and became undetectable at 10 days postfertilization (dpf). Polysome analysis revealed decreased 80S ribosomes. Homozygous mutant fish developed normally until 15 dpf. Mutant fish subsequently had stunted growth and showed signs of atrophy in pancreas, liver, and intestine. In addition, neutropenia occurred by 5 dpf. Upregulation of tp53 mRNA did not occur until 10 dpf, and inhibition of proliferation correlated with death by 21 dpf. Transcriptome analysis showed tp53 activation through upregulation of genes involved in cell cycle arrest, cdkn1a and ccng1, and apoptosis, puma and mdm2. However, elimination of Tp53 function did not prevent lethality. Because of growth retardation and atrophy of intestinal epithelia, we studied the effects of starvation on WT fish. Starved WT fish showed intestinal atrophy, zymogen granule loss, and tp53 upregulation - similar to the mutant phenotype. In addition, there was reduction in neutral lipid storage and ribosomal protein amount, similar to the mutant phenotype. Thus, loss of Sbds in zebrafish phenocopies much of the human disease and is associated with growth arrest and tissue atrophy, particularly of the gastrointestinal system, at the larval stage. A variety of stress responses, some associated with Tp53, contribute to pathophysiology of SDS.


Assuntos
Neutropenia/genética , Proteínas Nucleares/genética , Síndrome de Shwachman-Diamond/genética , Proteínas de Peixe-Zebra/genética , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Atrofia , Ciclina G1/genética , Ciclina G1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fígado/metabolismo , Fígado/patologia , Neutropenia/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ribossomos/metabolismo , Síndrome de Shwachman-Diamond/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...