Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(49): 19727-19738, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38049383

RESUMO

The structure of yeast cell wall (CW) mannoproteins (MPs) influences their impact on wine properties. Yeast species produce a diverse range of MPs, but the link between properties and specific structural features has been ill-characterized. This study compared the protein and polysaccharide moieties of MP-rich preparations from four strains of four different enologically relevant yeast species, named Saccharomyces boulardii (SB62), Saccharomyces cerevisiae (SC01), Metschnikowia fructicola (MF77), and Torulaspora delbrueckii (TD70), and a commercial MP preparation. Monosaccharide determination revealed that SB62 MPs contained the highest mannose/glucose ratio followed by SC01, while polysaccharide size distribution analyses showed maximum molecular weights ranging from 1349 kDa for MF77 to 483 kDa for TD70. Protein identification analysis led to the identification of unique CW proteins in SB62, SC01, and TD70, as well as some proteins shared between different strains. This study reveals MP composition diversity within wine yeasts and paves the way toward their industrial exploitation.


Assuntos
Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Filogenia , Fermentação , Polissacarídeos/metabolismo
2.
Foods ; 10(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922275

RESUMO

The exogenous application of yeast-derived mannoproteins presents many opportunities for the improvement of wine technological and oenological properties. Their isolation from the cell wall of Saccharomycescerevisiae has been well studied. However, investigations into the efficiency of extraction methods from non-Saccharomyces yeasts are necessary to explore the heterogeneity in structure and composition that varies between yeast species, which may influence wine properties such as clarity and mouthfeel. In this study, nine yeast strains were screened for cell wall mannoprotein content using fluorescence microscopy techniques. Four species were subsequently exposed to a combination of mechanical and enzymatic extraction methods to optimize mannoprotein yield. Yeast cells subjected to 4 min of ultrasound treatment applied at 80% of the maximum possible amplitude with a 50% duty cycle, followed by an enzymatic treatment of 4000 U lyticase per g dry cells weight, showed the highest mannoprotein-rich yield from all species. Furthermore, preliminary evaluation of the obtained extracts revealed differences in carbohydrate/protein ratios between species and with increased enzyme incubation time. The results obtained in this study form an important step towards further characterization of extraction treatment impact and yeast species effect on the isolated mannoproteins, and their subsequent influence on wine properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...