Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 398: 112955, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33031871

RESUMO

Vocal communication is a crucial skill required throughout life. However, there is a critical gap in our understanding of the underlying molecular brain mechanisms, thereby motivating our use of the zebra finch songbird model. Adult male zebra finches show differences in neural activity patterns in song-dedicated brain nuclei when they sing in two distinct social contexts: a male singing by himself (undirected, UD) and a male singing to a female (female-directed, FD). In our prior work, we showed that in song-dedicated basal ganglia Area X, protein levels of a N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) increased with more UD song and decreased with more FD song. We hypothesized that molecules downstream of this receptor would show differential protein expression levels in Area X between UD and FD song. Specifically, we investigated calcium/calmodulin dependent protein kinase II beta (CaMKIIB), homer scaffold protein 1 (HOMER1), serine/threonine protein kinase (Akt), and mechanistic target of rapamycin kinase (mTOR) following singing and non-singing states in Area X. We show relationships between social context and protein levels. HOMER1 protein levels decreased with time spent singing FD song, and mTOR protein levels decreased with the amount of and time spent singing FD song. For both HOMER1 and mTOR, there were no differences with the amount of UD song. With time spent singing UD, CaMKIIB protein levels trended in a U-shaped curve whereas Akt protein levels trended down. Both molecules showed no change with FD song. Our results support differential involvement of molecules in synaptic plasticity pathways between UD and FD song behaviors.


Assuntos
Gânglios da Base/metabolismo , Tentilhões/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Comportamento Social , Vocalização Animal/fisiologia , Animais , Masculino
2.
BMC Res Notes ; 13(1): 149, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164786

RESUMO

OBJECTIVES: Dopamine-replacement utilizing L-DOPA is still the mainstay treatment for Parkinson's disease (PD), but often leads to development of L-DOPA-induced dyskinesia (LID), which can be as debilitating as the motor deficits. There is currently no satisfactory pharmacological adjunct therapy. The endogenous opioid peptides enkephalin and dynorphin are important co-transmitters in the direct and indirect striatofugal pathways and have been implicated in genesis and expression of LID. Opioid receptor antagonists and agonists with different selectivity profiles have been investigated for anti-dyskinetic potential in preclinical models. In this study we investigated effects of the highly-selective µ-opioid receptor antagonist CTAP (> 1200-fold selectivity for µ- over δ-opioid receptors) and a novel glycopeptide congener (gCTAP5) that was glycosylated to increase stability, in the standard rat LID model. RESULTS: Intraperitoneal administration (i.p.) of either 0.5 mg/kg or 1 mg/kg CTAP and gCTAP5 completely blocked morphine's antinociceptive effect (10 mg/kg; i.p.) in the warm water tail-flick test, showing in vivo activity in rats after systemic injection. Neither treatment with CTAP (10 mg/kg; i.p.), nor gCTAP5 (5 mg/kg; i.p.) had any effect on L-DOPA-induced limb, axial, orolingual, or locomotor abnormal involuntary movements. The data indicate that highly-selective µ-opioid receptor antagonism alone might not be sufficient to be anti-dyskinetic.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Antagonistas de Entorpecentes/uso terapêutico , Receptores Opioides mu/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Glicopeptídeos/farmacologia , Masculino , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo
3.
Behav Brain Res ; 360: 103-112, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30521933

RESUMO

Dopamine (DA) is an important neuromodulator of motor control across species. In zebra finches, DA levels vary in song nucleus Area X depending upon social context. DA levels are high and song output is less variable when a male finch sings to a female (female directed, FD) compared to when he is singing by himself (undirected, UD). DA modulates glutamatergic input onto cortico-striatal synapses in Area X via N-methyl-d-aspartate (NMDA) and DA receptor mechanisms, but the relationship to UD vs. FD song output is unclear. Here, we investigate the expression of molecular markers of dopaminergic and glutamatergic synaptic transmission (tyrosine hydroxylase - TH, alpha-synuclein - α-syn) and plasticity (NMDA 2B receptor - GRIN2B) following singing (UD vs. FD) and non-singing states to understand the molecular mechanisms driving differences in song output. We identified relationships between protein levels for these biomarkers in Area X based on singing state and the amount of song, measured as the number of motifs and time spent singing. UD song amount drove increases in TH, α-syn, and NMDA 2B receptor protein levels. By contrast, the amount of FD song did not alter TH and NMDA 2B receptor expression. Levels of α-syn showed differential expression patterns based on UD vs. FD song, consistent with its role in modulating synaptic transmission. We propose a molecular pathway model to explain how social context and amount of song are important drivers of molecular changes required for synaptic transmission and plasticity.


Assuntos
Gânglios da Base/fisiologia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Transdução de Sinais/fisiologia , Meio Social , Vocalização Animal/fisiologia , Animais , Corticosterona/sangue , Tentilhões , Regulação da Expressão Gênica/fisiologia , Masculino , Receptores Dopaminérgicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Canto , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
4.
Neurosci Lett ; 564: 48-52, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24525249

RESUMO

Dopamine-replacement therapy with l-DOPA is still the gold standard treatment for Parkinson's disease (PD). One drawback is the common development of l-DOPA-induced dyskinesia (LID) in patients, which can be as disabling as the disease itself. There is no satisfactory adjunct therapy available. Glutamatergic transmission in the basal ganglia circuitry has been shown to be an important player in the development of LID. The N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 has previously been shown to reduce l-DOPA-induced abnormal involuntary movements (AIMs) in a rat preclinical model but only at concentrations that worsen parkinsonism. We investigated the contribution of the direct and indirect striatofugal pathways to these effects. In the direct pathway, dopamine D1 receptors (D1R) are expressed, whereas in the indirect pathway, dopamine D2 receptors (D2R) are expressed. We used the 6-hydroxydopamine-lesioned hemi-parkinsonian rat model initially primed with l-DOPA to induce dyskinesia. When the rats were then primed and probed with the D1R agonist SKF81297, co-injection of MK-801 worsened the D1R-induced limb, axial, and orolingual (LAO) AIMs by 18% (predominantly dystonic axial AIMs) but did not aggravate parkinsonian hypokinesia as reflected by a surrogate measure of ipsiversive rotations in this model. In contrast, when the rats were then primed and probed with the D2R agonist quinpirole, co-injection of MK-801 reduced D2R-induced LAO AIMs by 89% while inducing ipsiversive rotations. The data show that only inhibition of the indirect striatopallidal pathway is sufficient for the full anti-dyskinetic/pro-parkinsonian effects of the NMDA receptor antagonist MK-801, and that MK-801 modestly worsens dyskinesias that are due to activation of the direct striatonigral pathway alone. This differential activation of the glutamatergic systems in D1R- and D2R-mediated responses is relevant to current therapy for PD which generally includes a mixture of dopamine agonists and l-DOPA.


Assuntos
Maleato de Dizocilpina/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...