Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Parasitol Drugs Drug Resist ; 6(1): 74-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27054066

RESUMO

Parasitic diseases cause ∼ 500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosoma receptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs.


Assuntos
Leishmania/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/química , Desenho de Fármacos , Leishmania/química , Leishmania/genética , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Camundongos , Parasitemia/tratamento farmacológico , Peptídeos/administração & dosagem , Proteínas de Protozoários/química , Receptores de Quinase C Ativada , Receptores de Superfície Celular/química , Alinhamento de Sequência , Tripanossomicidas/administração & dosagem , Tripanossomicidas/química , Trypanosoma/genética , Tripanossomíase/tratamento farmacológico , Tripanossomíase/parasitologia
2.
PLoS Negl Trop Dis ; 9(4): e0003683, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25856423

RESUMO

BACKGROUND: Adhesion of the Trypanosoma cruzi trypomastigotes, the causative agent of Chagas' disease in humans, to components of the extracellular matrix (ECM) is an important step in host cell invasion. The signaling events triggered in the parasite upon binding to ECM are less explored and, to our knowledge, there is no data available regarding •NO signaling. METHODOLOGY/PRINCIPAL FINDINGS: Trypomastigotes were incubated with ECM for different periods of time. Nitrated and S-nitrosylated proteins were analyzed by Western blotting using anti-nitrotyrosine and S-nitrosyl cysteine antibodies. At 2 h incubation time, a decrease in NO synthase activity, •NO, citrulline, arginine and cGMP concentrations, as well as the protein modifications levels have been observed in the parasite. The modified proteins were enriched by immunoprecipitation with anti-nitrotyrosine antibodies (nitrated proteins) or by the biotin switch method (S-nitrosylated proteins) and identified by MS/MS. The presence of both modifications was confirmed in proteins of interest by immunoblotting or immunoprecipitation. CONCLUSIONS/SIGNIFICANCE: For the first time it was shown that T. cruzi proteins are amenable to modifications by S-nitrosylation and nitration. When T. cruzi trypomastigotes are incubated with the extracellular matrix there is a general down regulation of these reactions, including a decrease in both NOS activity and cGMP concentration. Notwithstanding, some specific proteins, such as enolase or histones had, at least, their nitration levels increased. This suggests that post-translational modifications of T. cruzi proteins are not only a reflex of NOS activity, implying other mechanisms that circumvent a relatively low synthesis of •NO. In conclusion, the extracellular matrix, a cell surrounding layer of macromolecules that have to be trespassed by the parasite in order to be internalized into host cells, contributes to the modification of •NO signaling in the parasite, probably an essential move for the ensuing invasion step.


Assuntos
Regulação para Baixo , Matriz Extracelular/fisiologia , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Trypanosoma cruzi/fisiologia , Animais , Western Blotting , Doença de Chagas/metabolismo , Humanos , Imunoprecipitação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Tirosina/análogos & derivados
3.
Free Radic Biol Med ; 75 Suppl 1: S50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26461401

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas disease. Two main distinct forms are present in the mammalian host: trypomastigote, an infective form, and the amastigote, a typical replicative form. Succeeding the host cell invasion, trypomastigotes differentiate to amastigotes, a process known as amastigogenesis. Amastigogenesis is characterized by parasite body remodeling, with drastic reduction of flagellum, and changes in protein profile and energetic metabolism. Our aim is to explore the role of nitric oxide as a signaling molecule during the amastigogenesis process, which must be strictly regulated. We report herein that acid pH (6.0) is essential for T. cruzi amastigogenesis. Also, during amastigogenesis there is a progressive solubilization of the paraflagellar protein, a flagellum marker. Moreover, the process is dependent on (•)NO concentration, since it is suppressed by 1mM SNAP, a (•)NO donor, and favored by 10mM L-NAME, a NOS inhibitor. Accordingly, S-nitrosylation of selective proteins occurs in amastigogenesis. Additionally, amastigogenesis is affected by IBMX (PDE inhibitor) treatment, suggesting the importance of cyclic nucleotides signaling. Furthermore, tubulin stability is also affected by the (•)NO availability. Along amastigogenesis, flagellum disassembling is accompanied by changes in a-tubulin tyrosylation and polyglutamylation levels. Taken together, these results suggest (•)NO participation in trypomastigote differentiation to amastigotes in T. cruzi.

4.
Arch Biochem Biophys ; 528(2): 103-10, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23036870

RESUMO

The putrescine analogue 1,4-diamino-2-butanone (DAB) is highly toxic to various microorganisms, including Trypanosoma cruzi. Similar to other α-aminocarbonyl metabolites, DAB exhibits pro-oxidant properties. DAB undergoes metal-catalyzed oxidation yielding H(2)O(2), NH(4)(+) ion, and a highly toxic α-oxoaldehyde. In vitro, DAB decreases mammalian cell viability associated with changes in redox balance. Here, we aim to clarify the DAB pro-oxidant effects on trypomastigotes and on intracellular T. cruzi amastigotes. DAB (0.05-5 mM) exposure in trypomastigotes, the infective stage of T. cruzi, leads to a decline in parasite viability (IC(50)c.a. 0.2 mM DAB; 4 h incubation), changes in morphology, thiol redox imbalance, and increased TcSOD activity. Medium supplementation with catalase (2.5 µM) protects trypomastigotes against DAB toxicity, while host cell invasion by trypomastigotes is hampered by DAB. Additionally, intracellular amastigotes are susceptible to DAB toxicity. Furthermore, pre-treatment with 100-500 µM buthionine sulfoximine (BSO) of LLC-MK2 potentiates DAB cytotoxicity, whereas 5 mM N-acetyl-cysteine (NAC) protects cells from oxidative stress. Together, these data support the hypothesis that redox imbalance contributes to DAB cytotoxicity in both T. cruzi and mammalian host cells.


Assuntos
Oxidantes/farmacologia , Putrescina/análogos & derivados , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo , Animais , Linhagem Celular , Modelos Biológicos , Oxidantes/toxicidade , Oxirredução , Proteínas de Protozoários/metabolismo , Putrescina/farmacologia , Putrescina/toxicidade , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/patogenicidade
5.
J Int Soc Sports Nutr ; 9(1): 25, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22691230

RESUMO

BACKGROUND: Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old) immediately before and 5 and 60 min after the exhaustive Wingate test. RESULTS: Maximum anaerobic power was improved by acute creatine supplementation (10.5 %), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. CONCLUSIONS: Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine.

6.
São Paulo; s.n; 2012. ilus, tab, graf.
Tese em Português | LILACS | ID: lil-691556

RESUMO

Compostos α-aminocarbonilícos como ácido 5-aminolevulínico (ALA) e aminoacetona (AA) apresentam um grande potencial pró-oxidante, pois sofrem reações de enolização e subseqüente oxidação aeróbica, com a formação de espécies radicalares de oxigênio, íons NH4+ e α-oxoaldeídos potencialmente citotóxicos. A α-aminocetona 1,4-diamino-2-butanona (DAB), um análogo da putrescina, é um agente microbicida de vários parasitas incluindo Trypanosoma cruzi. Acredita-se que o mecanismo de morte desencadeado por DAB nos parasitas seja por meio da inibição competitiva da ornitina descarboxilase (ODC), importante enzima do metabolismo de poliaminas, muito embora tenha sido observado de igual forma danos oxidativos nestes parasitas quando tratados com DAB. O objetivo deste trabalho é esclarecer o mecanismo de oxidação química de DAB e sua ação pró-oxidante à cultura de células de mamíferos (LLC-MK2 e RKO), assim como sua atividade microbicida contra tripomastigotas de Trypanosoma cruzi. Demonstramos aqui que DAB, quimicamente similar ao ALA e AA, sofre reação de oxidação catalisada por íons fosfato, e por íons de metais de transição como Fe(II) e Cu(II), resultando na formação de radicais de oxigênio, H2O2, NH4+, 2-oxo-4-aminobutanal como produto principal da oxidação de DAB e de compostos ciclicos de caracter pirrólico. Danos oxidativos observados em ferritina, apotransferrina e liposomos de cardiolipina e fosfatidilcolina (20:80) contribuem para a nossa hipótese de ação pró-oxidante de DAB. O tratamento de células de mamíferos das linhagens LLC-MK2 (IC50 1,5 mM, tratamento de 24 h) e RKO (IC50 0,3 mM, tratamento de 24 h) com DAB levou à alteração do balanço redox celular, à ativação de resposta antioxidante e ao desencadeamento de morte celular via apoptose e parada de ciclo celular. Em culturas de tripomastigotas de T. cruzi o tratamento com DAB culminou na redução da motilitidade e viabilidade destes parasitas (IC50 0,2 mM, tratamento de 4 h), assim como depleção do...


α-Aminocarbonyl componds such as 5-aminolevunilic acid (ALA) and aminoacetone (AA) have been shown to exhibit pro-oxidant properties. These compounds undergo phosphate-catalyzed enolization in physiological pH and subsequent aerobic oxidation, yielding reactive oxygen species, NH4+ ions and an α-oxoaldehyde highly cytotoxic. The α-aminoketone 1,4-diamino-2-butanone (DAB) is a putrescine analogue and a microbicidal agent to various parasites including Trypanosoma cruzi. The mechanism of DAB toxicity to these parasites is attributed to DAB competitive inhibition of ornithine decarboxylase (ODC), a key enzyme on polyamine biosynthesis, although it has also been shown DAB isto implicated in oxidative damage to these parasites. Our aim is to clarify the mechanism of DAB aerobic oxidation and of its putative pro-oxidant activity to mammalian cell cultures (LLC-MK2 and RKO cell linages) and to Trypanosoma cruzi trypomastigotes. Here we show that, similar to ALA and AA, DAB undergoes aerobic oxidation in presence of phosphate ions and of transition metal ions such as Fe(II) and Cu(II), yielding oxygen radicals, H2O2, NH4+ and 2-oxo-4-aminobutanal accompanied by its condensation cyclic products displaying pyrrolic characteristics. Oxidative alterations to ferritin, apotransferrin and liposomes of cardiolipin and phosphatidylcholine (20:80) were observed under DAB treatment strongly supporting our hypothesis of DAB pro-oxidative activity. DAB treatment of mammalian cultured cells LLC-MK2 (IC50 1.5 mM, 24 h incubation) and RKO (IC50 0.3 mM, 24 h incubation) resulted in redox imbalance, induction of antioxidant response, activation of apoptosis pathway and cell cycle arrest. DAB is shown here to trigger Trypanosoma cruzi trypomastigotes decreased parasite motility and viability (IC50 0.2 mM, 4 h incubation), as well as redox thiol imbalance parallel to increase TcSOD activity. In addition, DAB efficiently hampered host cell (LLC-MK2) invasion by trypomastigotes...


Assuntos
Fenômenos Fisiológicos Celulares , Técnicas In Vitro , Mamíferos , Mecanismos Moleculares de Ação Farmacológica , Oxidantes/toxicidade , Putrescina/análise , Trypanosoma cruzi , Espécies Reativas de Oxigênio/química , Reações Bioquímicas/análise
7.
Free Radic Biol Med ; 50(12): 1760-70, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21466850

RESUMO

The α-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB's cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37°C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other α-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml-1) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(•), and those with α-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(•) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 µM) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Putrescina/análogos & derivados , Espécies Reativas de Oxigênio/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Linhagem Celular , Ferritinas/efeitos dos fármacos , Radicais Livres/análise , Radicais Livres/toxicidade , Haplorrinos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Metais/química , Consumo de Oxigênio/efeitos dos fármacos , Poliaminas/química , Putrescina/química , Putrescina/farmacologia , Superóxidos/química , Superóxidos/metabolismo , Transferrina/efeitos dos fármacos
8.
Food Chem Toxicol ; 46(9): 3147-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18684395

RESUMO

In this study, Chlorella vulgaris (CV) was examined for its chelating effects on the ability of bone marrow stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice, using the long-term bone marrow culture (LTBMC). In addition, the levels of interleukin (IL)-6, an important hematopoietic stimulator, as well as the numbers of adherent and non-adherent cells were also investigated. Mice were gavage treated daily with a single 50mg/kg dose of CV for 10 days, concomitant to continuous offering of 1300ppm lead acetate in drinking water. We found that CV up-modulates the reduced ability of stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice and restores both the reduced number of non-adherent cells and the ability of stromal cells from these mice to produce IL-6. Monitoring of lead poisoning demonstrated that CV treatment significantly reduced lead levels in blood and tissues, completely restored the normal hepatic ALA levels, decreased the abnormally high plasma ALA and partly recovered the liver capacity to produce porphyrins. These findings provide evidence for a beneficial use of CV for combination or alternative chelating therapy to protect the host from the damage induced by lead poisoning.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Quelantes/química , Quelantes/farmacologia , Chlorella vulgaris/química , Chumbo/toxicidade , Células Estromais/efeitos dos fármacos , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Células Clonais/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-6/metabolismo , Chumbo/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Porfirinas/biossíntese , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...