Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 4(3)2017 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-28952541

RESUMO

The use of culture-independent approaches, such as metagenomics, provides complementary access to environmental microbial diversity. Mangrove environments represent a highly complex system with plenty of opportunities for finding singular functions. In this study we performed a functional screening of fosmid libraries obtained from an oil contaminated mangrove site, with the purpose of identifying clones expressing hydrolytic activities. A novel gene coding for a ß-N-acetylhexosaminidase with 355 amino acids and 43KDa was retrieved and characterized. The translated sequence showed only 38% similarity to a ß-N-acetylhexosaminidase gene in the genome of Veillonella sp. CAG:933, suggesting that it might constitute a novel enzyme. The enzyme was expressed, purified, and characterized for its enzymatic activity on carboxymethyl cellulose, p-Nitrophenyl-2acetamide-2deoxy-ß-d-glucopyranoside, p-Nitrophenyl-2acetamide-2deoxy-ß-d-galactopyranoside, and 4-Nitrophenyl ß-d-glucopyranoside, presenting ß-N-acetylglucosaminidase, ß-glucosidase, and ß-1,4-endoglucanase activities. The enzyme showed optimum activity at 30 °C and pH 5.5. The characterization of the putative novel ß-N-acetylglucosaminidase enzyme reflects similarities to characteristics of the environment explored, which differs from milder conditions environments. This work exemplifies the application of cultivation-independent molecular techniques to the mangrove microbiome for obtaining a novel biotechnological product.

2.
Genome Announc ; 2(1)2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24482524

RESUMO

Here, we report the draft genome sequence and the automatic annotation of Bacillus thuringiensis strain BrMgv02-JM63. This genome comprises a set of genes involved in the metabolism of chitin and N-acetylglucosamine utilization, thus suggesting the possible role of this strain in the cycling of organic matter in mangrove soils.

3.
Appl Environ Microbiol ; 78(22): 7960-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22941088

RESUMO

Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.


Assuntos
Avicennia/microbiologia , Bactérias/classificação , Biota , Combretaceae/microbiologia , Variação Genética , Oxirredutases/genética , Rhizophoraceae/microbiologia , Bactérias/genética , Brasil , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
4.
World J Microbiol Biotechnol ; 28(5): 2195-203, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22806042

RESUMO

It is believed that the exposure of organisms to harsh climate conditions may select for differential enzymatic activities, making the surviving organisms a very promising source for bioprospecting. Soil bacteria play an important role in degradation of organic matter, which is mostly due to their ability to decompose cellulose-based materials. This work focuses on the isolation and identification of cellulolytic bacteria from soil found in two environments with stressful climate conditions (Antarctica and the Brazilian semi-arid caatinga). Cellulolytic bacteria were selected using enrichments at high and low temperatures (4 or 60°C) in liquid media (trypic soy broth-TSB and minimum salt medium-MM) supplemented with cellulose (1%). Many of the isolates (119 out of 254-46.9%) displayed the ability to degrade carboxymethyl-cellulose, indicating the presence of endoglucolytic activity, while only a minority of these isolates (23 out of 254-9.1%) showed exoglucolytic activity (degradation of avicel). The obtained isolates revealed a preferential endoglucolytic activity according to the temperature of enrichments. Also, the identification of some isolates by partial sequencing of the 16S rRNA gene indicated that the Bacteroidetes (e.g., Pedobacter, Chryseobacterium and Flavobacterium) were the main phylum of cellulolytic bacteria isolated from soil in Antarctica; the Firmicutes (e.g., Bacillus) were more commonly isolated from samples from the caatinga; and Actinobacteria were found in both types of soil (e.g., Microbacterium and Arthrobacter). In conclusion, this work reports the isolation of bacteria able to degrade cellulose-based material from soil at very low or very high temperatures, a finding that should be further explored in the search for cellulolytic enzymes to be used in the bioenergy industry.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Celulases/metabolismo , Celulose/metabolismo , Microbiologia do Solo , Regiões Antárticas , Bactérias/classificação , Bactérias/isolamento & purificação , Brasil , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Clima Desértico , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...