Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 131148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547949

RESUMO

Glucose interacts with human serum albumin (HSA, the main protein responsible for the biodistribution of drugs in the bloodstream) and consequently affects the binding capacity of exogenous compounds. Thus, in this work, the interactive profile between HSA and the anti-inflammatory drug nimesulide (NMD, used mainly by patients with diabetic neuropathy to relieve acute or chronic pains) was characterized in nonglycemic, normoglycemic (80 mg/dL), and hyperglycemic (320 mg/dL) conditions by biophysics techniques. There is a spontaneous and ground-state association HSA:NMD under physiological conditions. Therefore, the Stern-Volmer constant (Ksv) can also be used to estimate the binding affinity. The Ksv values for nonglycemic, normoglycemic, and hyperglycemic conditions are around 104 M-1, indicating a moderate affinity of NMD to albumin that was slightly improved by glucose levels. Additionally, the binding is enthalpically and entropically driven mainly into subdomains IIA or IIIA. The binding perturbs weakly the α-helix content of albumin, however, glucose potentially stabilizes the tertiary structure, decreasing the structural perturbation upon NMD binding and improves the complex HSA:NMD stability. Overall, the biophysical characterization indicated that glucose levels might slightly positively impact the pharmacokinetic profile of NMD, allowing NMD to achieve its therapeutical potential without affecting drastically its effective dosages.


Assuntos
Glucose , Albumina Sérica Humana , Sulfonamidas , Humanos , Albumina Sérica Humana/química , Distribuição Tecidual , Ligação Proteica , Anti-Inflamatórios não Esteroides/farmacologia , Sítios de Ligação , Espectrometria de Fluorescência , Termodinâmica , Dicroísmo Circular , Simulação de Acoplamento Molecular
2.
Int J Mol Sci ; 17(1)2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26742031

RESUMO

The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride-HSA were 2.20 (±0.08) × 104 M(-1), at 37 °C, and 5.46 (±0.20) × 104 M(-1), at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M(-1), at 37 °C and 2.17 (±0.04) × 104 M(-1), at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure.


Assuntos
Antipsicóticos/metabolismo , Soroalbumina Bovina/metabolismo , Albumina Sérica/metabolismo , Sulpirida/metabolismo , Animais , Sítios de Ligação , Bovinos , Humanos , Ligação Proteica , Albumina Sérica/química , Soroalbumina Bovina/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...