Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798453

RESUMO

Mucosal-associated invariant T (MAIT) cells are predominantly located in barrier tissues where they rapidly respond to pathogens and commensals by recognizing microbial derivatives of riboflavin synthesis. Early-life exposure to these metabolites imprints the abundance of MAIT cells within tissues, so we hypothesized that antibiotic use during this period may abrogate their development. We identified antibiotics that deplete riboflavin-synthesizing commensals and revealed an early period of susceptibility during which antibiotic administration impaired MAIT cell development. The reduction in MAIT cell abundance rendered mice more susceptible to pneumonia, while MAIT cell-deficient mice were unaffected by early-life antibiotics. Concomitant administration of a riboflavin-synthesizing commensal during antibiotic treatment was sufficient to restore MAIT cell development and immunity. Our work demonstrates that transient depletion of riboflavin-synthesizing commensals in early life can adversely affect responses to subsequent infections.

3.
Proc Natl Acad Sci U S A ; 120(33): e2209631120, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549274

RESUMO

Most current climate models predict that the equatorial Pacific will evolve under greenhouse gas-induced warming to a more El Niño-like state over the next several decades, with a reduced zonal sea surface temperature gradient and weakened atmospheric Walker circulation. Yet, observations over the last 50 y show the opposite trend, toward a more La Niña-like state. Recent research provides evidence that the discrepancy cannot be dismissed as due to internal variability but rather that the models are incorrectly simulating the equatorial Pacific response to greenhouse gas warming. This implies that projections of regional tropical cyclone activity may be incorrect as well, perhaps even in the direction of change, in ways that can be understood by analogy to historical El Niño and La Niña events: North Pacific tropical cyclone projections will be too active, North Atlantic ones not active enough, for example. Other perils, including severe convective storms and droughts, will also be projected erroneously. While it can be argued that these errors are transient, such that the models' responses to greenhouse gases may be correct in equilibrium, the transient response is relevant for climate adaptation in the next several decades. Given the urgency of understanding regional patterns of climate risk in the near term, it would be desirable to develop projections that represent a broader range of possible future tropical Pacific warming scenarios-including some in which recent historical trends continue-even if such projections cannot currently be produced using existing coupled earth system models.

5.
J Adv Model Earth Syst ; 14(1): e2021MS002601, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35865216

RESUMO

The next-generation global climate model from the NASA Goddard Institute for Space Studies, GISS-E3, contains many improvements to resolution and physics that allow for improved representation of tropical cyclones (TCs) in the model. This study examines the properties of TCs in two different versions of E3 at different points in its development cycle, run for 20 years at 0.5° resolution, and compares these TCs with observations, the previous generation GISS model, E2, and other climate models. E3 shares many TC biases common to global climate models, such as having too few tropical cyclones, but is much improved from E2. E3 produces strong enough TCs that observation-based wind speed thresholds can now be used to detect and track them, and some storms now reach hurricane intensity; neither of these was true of E2. Model development between the first and second versions of E3 further increased the number and intensity of TCs and reduced TC count biases globally and in most regions. One-year sensitivity tests to changes in various microphysical and dynamical tuning parameters are also examined. Increasing the entrainment rate for the more strongly entraining plume in the convection scheme increases the number of TCs (though also affecting other climate variables, and in some cases increasing biases). Variations in divergence damping did not have a strong effect on simulated TC properties, contrary to expectations based on previous studies. Overall, the improvements in E3 make it more credible for studies of TC activity and its relationship to climate.

6.
Nat Biotechnol ; 38(11): 1288-1297, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32541956

RESUMO

The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1ß), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.


Assuntos
Aterosclerose/microbiologia , Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Aterosclerose/sangue , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biomarcadores/metabolismo , Colesterol/sangue , Dieta Ocidental , Comportamento Alimentar , Feminino , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Fatores Imunológicos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Receptores de LDL/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 117(16): 8757-8763, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253303

RESUMO

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.

8.
Proc Natl Acad Sci U S A ; 115(38): 9467-9472, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181273

RESUMO

A useful starting hypothesis for predictions of changes in precipitation extremes with climate is that those extremes increase at the same rate as atmospheric moisture does, which is [Formula: see text] following the Clausius-Clapeyron (CC) relation. This hypothesis, however, neglects potential changes in the strengths of atmospheric circulations associated with precipitation extremes. As increased moisture leads to increased precipitation, the increased latent heating may lead to stronger large-scale ascent and thus, additional increase in precipitation, leading to a super-CC scaling. This study investigates this possibility in the context of the 2015 Texas extreme precipitation event using the Column Quasi-Geostrophic (CQG) method. Analogs to this event are simulated in different climatic conditions with varying surface temperature ([Formula: see text]) given the same adiabatic quasigeostrophic forcing. Precipitation in these events exhibits super-CC scaling due to the dynamic contribution associated with increasing ascent due to increased latent heating, an increase with importance that increases with [Formula: see text] The thermodynamic contribution (attributable to increasing water vapor; assuming no change in vertical motion) approximately follows CC as expected, while vertical structure changes of moisture and diabatic heating lead to negative but secondary contributions to the sensitivity, reducing the rate of increase.

9.
Clim Change ; 151(3): 555-571, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30880852

RESUMO

As climate change research becomes increasingly applied, the need for actionable information is growing rapidly. A key aspect of this requirement is the representation of uncertainties. The conventional approach to representing uncertainty in physical aspects of climate change is probabilistic, based on ensembles of climate model simulations. In the face of deep uncertainties, the known limitations of this approach are becoming increasingly apparent. An alternative is thus emerging which may be called a 'storyline' approach. We define a storyline as a physically self-consistent unfolding of past events, or of plausible future events or pathways. No a priori probability of the storyline is assessed; emphasis is placed instead on understanding the driving factors involved, and the plausibility of those factors. We introduce a typology of four reasons for using storylines to represent uncertainty in physical aspects of climate change: (i) improving risk awareness by framing risk in an event-oriented rather than a probabilistic manner, which corresponds more directly to how people perceive and respond to risk; (ii) strengthening decision-making by allowing one to work backward from a particular vulnerability or decision point, combining climate change information with other relevant factors to address compound risk and develop appropriate stress tests; (iii) providing a physical basis for partitioning uncertainty, thereby allowing the use of more credible regional models in a conditioned manner and (iv) exploring the boundaries of plausibility, thereby guarding against false precision and surprise. Storylines also offer a powerful way of linking physical with human aspects of climate change.

10.
J Adv Model Earth Syst ; 9(2): 1251-1268, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28943996

RESUMO

Changes in the Madden-Julian Oscillation (MJO) with increasing CO2 concentrations are examined using the Goddard Institute for Space Studies Global Climate Model (GCM). Four simulations performed with fixed CO2 concentrations of 0.5, 1, 2, and 4 times preindustrial levels using the GCM coupled with a mixed layer ocean model are analyzed in terms of the basic state, rainfall, moisture and zonal wind variability, and the structure and propagation of the MJO. The GCM simulates basic state changes associated with increasing CO2 that are consistent with results from earlier studies: column water vapor increases at ∼7.1% K-1, precipitation also increases but at a lower rate (∼3% K-1), and column relative humidity shows little change. Moisture and rainfall variability intensify with warming while zonal wind variability shows little change. Total moisture and rainfall variability increases at a rate this is similar to that of the mean state change. The intensification is faster in the MJO-related anomalies than in the total anomalies, though the ratio of the MJO band variability to its westward counterpart increases at a much slower rate. On the basis of linear regression analysis and space-time spectral analysis, it is found that the MJO exhibits faster eastward propagation, faster westward energy dispersion, a larger zonal scale, and deeper vertical structure in warmer climates.

11.
J Adv Model Earth Syst ; 9(8): 2946-2967, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29497477

RESUMO

The processes that lead to changes in the propagation and maintenance of the Madden-Julian Oscillation (MJO) as a response to increasing CO2 are examined by analyzing moist static energy budget of the MJO in a series of NASA GISS model simulations. It is found changes in MJO propagation is dominated by several key processes. Horizontal moisture advection, a key process for MJO propagation, is found to enhance predominantly due to an increase in the mean horizontal moisture gradients. The terms that determine the strength of the advecting wind anomalies, the MJO horizontal scale and the dry static stability, are found to exhibit opposing trends that largely cancel out. Furthermore, reduced sensitivity of precipitation to changes in column moisture, i.e., a lengthening in the convective moisture adjustment time scale, also opposes enhanced propagation. The dispersion relationship of Adames and Kim, which accounts for all these processes, predicts an acceleration of the MJO at a rate of ∼3.5% K-1, which is consistent with the actual phase speed changes in the simulation. For the processes that contribute to MJO maintenance, it is found that damping by vertical MSE advection is reduced due to the increasing vertical moisture gradient. This weaker damping is nearly canceled by weaker maintenance by cloud-radiative feedbacks, yielding the growth rate from the linear moisture mode theory nearly unchanged with the warming. Furthermore, the estimated growth rates are found to be a small, negative values, suggesting that the MJO in the simulation is a weakly damped mode.

12.
Science ; 353(6296): 242-6, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418502

RESUMO

Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.


Assuntos
Tempestades Ciclônicas , Aquecimento Global , Efeito Estufa , Atividades Humanas , Clima Tropical , Aerossóis , Humanos , Modelos Teóricos , Estações do Ano , Temperatura
13.
Sci Rep ; 6: 25697, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27278823

RESUMO

Evidence increasingly suggests that as climate warms, some plant, animal, and human populations may move to preserve their environmental temperature. The distances they must travel to do this depends on how much cooler nearby surfaces temperatures are. Because large-scale atmospheric dynamics constrain surface temperatures to be nearly uniform near the equator, these displacements can grow to extreme distances in the tropics, even under relatively mild warming scenarios. Here we show that in order to preserve their annual mean temperatures, tropical populations would have to travel distances greater than 1000 km over less than a century if global mean temperature rises by 2 °C over the same period. The disproportionately rapid evacuation of the tropics under such a scenario would cause migrants to concentrate in tropical margins and the subtropics, where population densities would increase 300% or more. These results may have critical consequences for ecosystem and human wellbeing in tropical contexts where alternatives to geographic displacement are limited.


Assuntos
Mudança Climática , Ecossistema , Temperatura , Clima Tropical , Adaptação Fisiológica , Algoritmos , Animais , Aquecimento Global , Humanos , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional
14.
Nat Commun ; 7: 10625, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26838056

RESUMO

The severity of a tropical cyclone (TC) is often summarized by its lifetime maximum intensity (LMI), and the climatological LMI distribution is a fundamental feature of the climate system. The distinctive bimodality of the LMI distribution means that major storms (LMI >96 kt) are not very rare compared with less intense storms. Rapid intensification (RI) is the dramatic strengthening of a TC in a short time, and is notoriously difficult to forecast or simulate. Here we show that the bimodality of the LMI distribution reflects two types of storms: those that undergo RI during their lifetime (RI storms) and those that do not (non-RI storms). The vast majority (79%) of major storms are RI storms. Few non-RI storms (6%) become major storms. While the importance of RI has been recognized in weather forecasting, our results demonstrate that RI also plays a crucial role in the TC climatology.

15.
Proc Natl Acad Sci U S A ; 112(37): 11473-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324902

RESUMO

The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget. These results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents.

16.
Proc Natl Acad Sci U S A ; 110(38): 15211-5, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003129

RESUMO

Superstorm Sandy ravaged the eastern seaboard of the United States, costing a great number of lives and billions of dollars in damage. Whether events like Sandy will become more frequent as anthropogenic greenhouse gases continue to increase remains an open and complex question. Here we consider whether the persistent large-scale atmospheric patterns that steered Sandy onto the coast will become more frequent in the coming decades. Using the Coupled Model Intercomparison Project, phase 5 multimodel ensemble, we demonstrate that climate models consistently project a decrease in the frequency and persistence of the westward flow that led to Sandy's unprecedented track, implying that future atmospheric conditions are less likely than at present to propel storms westward into the coast.


Assuntos
Movimentos do Ar , Atmosfera , Mudança Climática , Tempestades Ciclônicas , Modelos Teóricos , Previsões
17.
J Am Chem Soc ; 132(38): 13194-6, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20812741

RESUMO

A direct arylation of a variety of electron-deficient heterocycles with arylboronic acids has been developed. This new reaction proceeds readily at room temperature using inexpensive reagents: catalytic silver(I) nitrate in the presence of persulfate co-oxidant. The scope with respect to heterocycle and boronic acid coupling partner is broad, and sensitive functional groups are tolerated. This method allows for rapid access to a variety of arylated heterocycles that would be more difficult to access with traditional methods.


Assuntos
Ácidos Borônicos/química , Carbono/química , Compostos Heterocíclicos/química , Hidrogênio/química
18.
Chaos ; 12(2): 451-459, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12779575

RESUMO

Water vapor is a constituent of the tropical atmosphere which, though to a significant extent locally controlled by vertical advection, precipitation, and surface evaporation, is also affected by horizontal advection. Water vapor affects the flow in turn, because a humid atmosphere supports deep, precipitating convection more readily than a dry atmosphere. Precipitation heats the atmosphere, and this heating drives the flow. Water vapor is thus a dynamically active constituent. Simplifications to the primitive equations of dynamical meteorology, based on the so-called weak temperature gradient approximation, are presented which highlight this behavior. The weak temperature gradient approximation is valid on large scales near the equator. It eliminates gravity waves, leaving only balanced dynamics, though the fundamental balance occurs in the temperature rather than the momentum equation (as is customary in most balance models of geophysical fluid dynamics). The dynamical role of water vapor is examined in a couple of idealized contexts, where either the vertical or horizontal structure of the flow is severely simplified. (c) 2002 American Institute of Physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...