Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 3234: 89-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507202

RESUMO

Cellular machines formed by the interaction and assembly of macromolecules are essential in many processes of the living cell. These assemblies involve homo- and hetero-associations, including protein-protein, protein-DNA, protein-RNA, and protein-polysaccharide associations, most of which are reversible. This chapter describes the use of analytical ultracentrifugation, light scattering, and fluorescence-based methods, well-established biophysical techniques, to characterize interactions leading to the formation of macromolecular complexes and their modulation in response to specific or unspecific factors. We also illustrate, with several examples taken from studies on bacterial processes, the advantages of the combined use of subsets of these techniques as orthogonal analytical methods to analyze protein oligomerization and polymerization, interactions with ligands, hetero-associations involving membrane proteins, and protein-nucleic acid complexes.


Assuntos
Proteínas , RNA , Espectrometria de Fluorescência , Proteínas/química , Substâncias Macromoleculares , Ultracentrifugação/métodos
2.
Int J Biol Macromol ; 253(Pt 1): 126398, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37634788

RESUMO

The conserved process of cell division in bacteria has been a long-standing target for antimicrobials, although there are few examples of potent broad-spectrum compounds that inhibit this process. Most currently available compounds acting on division are directed towards the FtsZ protein, a self-assembling GTPase that is a central element of the division machinery in most bacteria. Benzodioxane-benzamides are promising candidates, but poorly explored in Gram-negatives. We have tested a number of these compounds on E. coli FtsZ and found that many of them significantly stabilized the polymers against disassembly and reduced the GTPase activity. Reconstitution in crowded cell-like conditions showed that FtsZ bundles were also susceptible to these compounds, including some compounds that were inactive on protofilaments in dilute conditions. They efficiently killed E. coli cells defective in the AcrAB efflux pump. The activity of the compounds on cell growth and division generally showed a good correlation with their effect in vitro, and our experiments are consistent with FtsZ being the target in vivo. Our results uncover the detrimental effects of benzodioxane-benzamides on permeable E. coli cells via its central division protein, implying that lead compounds may be found within this class for the development of antibiotics against Gram-negative bacteria.


Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/metabolismo , Benzamidas/farmacologia , Proteínas do Citoesqueleto/metabolismo , Bactérias/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia
3.
Open Biol ; 13(3): 220324, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36854378

RESUMO

Cytokinesis is a fundamental process for bacterial survival and proliferation, involving the formation of a ring by filaments of the GTPase FtsZ, spatio-temporally regulated through the coordinated action of several factors. The mechanisms of this regulation remain largely unsolved, but the inhibition of FtsZ polymerization by the nucleoid occlusion factor SlmA and filament stabilization by the widely conserved cross-linking protein ZapA are known to play key roles. It was recently described that FtsZ, SlmA and its target DNA sequences (SlmA-binding sequence (SBS)) form phase-separated biomolecular condensates, a type of structure associated with cellular compartmentalization and resistance to stress. Using biochemical reconstitution and orthogonal biophysical approaches, we show that FtsZ-SlmA-SBS condensates captured ZapA in crowding conditions and when encapsulated inside cell-like microfluidics microdroplets. We found that, through non-competitive binding, the nucleotide-dependent FtsZ condensate/polymer interconversion was regulated by the ZapA/SlmA ratio. This suggests a highly concentration-responsive tuning of the interconversion that favours FtsZ polymer stabilization by ZapA under conditions mimicking intracellular crowding. These results highlight the importance of biomolecular condensates as concentration hubs for bacterial division factors, which can provide clues to their role in cell function and bacterial survival of stress conditions, such as those generated by antibiotic treatment.


Assuntos
Acrilatos , Condensados Biomoleculares , Citocinese , Polímeros
4.
Biochemistry ; 61(22): 2482-2489, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36315857

RESUMO

Dynamic biomolecular condensates formed by liquid-liquid phase separation can regulate the spatial and temporal organization of proteins, thus modulating their functional activity in cells. Previous studies showed that the cell division protein FtsZ from Escherichia coli formed dynamic phase-separated condensates with nucleoprotein complexes containing the FtsZ spatial regulator SlmA under crowding conditions, with potential implications for condensate-mediated spatiotemporal control of FtsZ activity in cell division. In the present study, we assessed formation of these condensates in the presence of lipid surfaces and glutamate ions to better approximate the E. coli intracellular environment. We found that potassium glutamate substantially promoted the formation of FtsZ-containing condensates when compared to potassium chloride in crowded solutions. These condensates accumulated on supported lipid bilayers and eventually fused, resulting in a time-dependent increase in the droplet size. Moreover, the accumulated condensates were dynamic, capturing protein from the external phase. FtsZ partitioned into the condensates at the lipid surface only in its guanosine diphosphate (GDP) form, regardless of whether it came from FtsZ polymer disassembly upon guanosine triphosphate (GTP) exhaustion. These results provide insights into the behavior of these GTP-responsive condensates in minimal membrane systems, which suggest how these membraneless assemblies may tune critical bacterial division events during the cell cycle.


Assuntos
Proteínas de Transporte , Proteínas do Citoesqueleto , Proteínas de Escherichia coli , Ânions/metabolismo , Condensados Biomoleculares , Proteínas de Transporte/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Guanosina Trifosfato/metabolismo , Bicamadas Lipídicas/metabolismo
5.
mBio ; 11(5)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873767

RESUMO

Protection of the chromosome from scission by the division machinery during cytokinesis is critical for bacterial survival and fitness. This is achieved by nucleoid occlusion, which, in conjunction with other mechanisms, ensures formation of the division ring at midcell. In Escherichia coli, this mechanism is mediated by SlmA, a specific DNA binding protein that antagonizes assembly of the central division protein FtsZ into a productive ring in the vicinity of the chromosome. Here, we provide evidence supporting direct interaction of SlmA with lipid membranes, tuned by its binding partners FtsZ and SlmA binding sites (SBS) on chromosomal DNA. Reconstructions in minimal membrane systems that mimic cellular environments show that SlmA binds to lipid-coated microbeads or locates at the edge of microfluidic-generated microdroplets, inside which the protein is encapsulated. DNA fragments containing SBS sequences do not seem to be recruited to the membrane by SlmA but instead compete with SlmA's ability to bind lipids. The interaction of SlmA with FtsZ modulates this behavior, ultimately triggering membrane localization of the SBS sequences alongside the two proteins. The ability of SlmA to bind lipids uncovered in this work extends the interaction network of this multivalent regulator beyond its well-known protein and nucleic acid recognition, which may have implications in the overall spatiotemporal control of division ring assembly.IMPORTANCE Successful bacterial proliferation relies on the spatial and temporal precision of cytokinesis and its regulation by systems that protect the integrity of the nucleoid. In Escherichia coli, one of these protectors is SlmA protein, which binds to specific DNA sites around the nucleoid and helps to shield the nucleoid from inappropriate bisection by the cell division septum. Here, we discovered that SlmA not only interacts with the nucleoid and septum-associated cell division proteins but also binds directly to cytomimetic lipid membranes, adding a novel putative mechanism for regulating the local activity of these cell division proteins. We find that interaction between SlmA and lipid membranes is regulated by SlmA's DNA binding sites and protein binding partners as well as chemical conditions, suggesting that the SlmA-membrane interactions are important for fine-tuning the regulation of nucleoid integrity during cytokinesis.


Assuntos
Proteínas de Transporte/metabolismo , Cromossomos Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Lipídeos de Membrana/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Divisão Celular , Citocinese , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ligação Proteica
6.
Biochemistry ; 58(38): 4003-4015, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31390865

RESUMO

In most bacteria, the early step of septum formation implies the association of soluble FtsZ polymers with the cytoplasmic membrane. ZipA, together with FtsA, provides membrane tethering to FtsZ in Escherichia coli, forming a dynamic proto-ring that serves as an assembly scaffold for the remaining elements of the divisome. Despite their importance for bacterial cell division, multivalent interactions between proto-ring elements at membrane surfaces remain poorly characterized in quantitative terms. We measured the binding of FtsZ to ZipA incorporated in supported lipid bilayers at controlled densities by using a combination of biophysical surface-sensitive techniques (quartz crystal microbalance and spectroscopic ellipsometry) and analyzed how ZipA density and FtsZ concentration control the state of assembly of FtsZ. We found that ZipA attachment enables FtsZ-GMPCPP (where GMPCPP is a GTP analogue with a reduced level of hydrolysis) to assemble in several distinct ways: (i) two-dimensional polymerization at the membrane and (ii) three-dimensional polymerization from the membrane into the solution phase where this may be associated with the formation of higher-order complexes. In these processes, ZipA is required to enrich FtsZ at the surface but the FtsZ bulk concentration defines which morphology is being formed. Moreover, we report a strong effect of the nucleotide (GDP vs GMPCPP/GTP) on the kinetics of ZipA association/dissociation of FtsZ. These results provide insights into the mode of interaction of proto-ring elements in minimal membrane systems and contribute to the completion of our understanding of the initial events of bacterial division.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Hidrólise , Cinética , Bicamadas Lipídicas/metabolismo , Nucleotídeos/metabolismo , Multimerização Proteica
7.
mBio ; 10(3)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138739

RESUMO

Division ring formation at midcell is controlled by various mechanisms in Escherichia coli, one of them being the linkage between the chromosomal Ter macrodomain and the Z-ring mediated by MatP, a DNA binding protein that organizes this macrodomain and contributes to the prevention of premature chromosome segregation. Here we show that, during cell division, just before splitting the daughter cells, MatP seems to localize close to the cytoplasmic membrane, suggesting that this protein might interact with lipids. To test this hypothesis, we investigated MatP interaction with lipids in vitro We found that, when encapsulated inside vesicles and microdroplets generated by microfluidics, MatP accumulates at phospholipid bilayers and monolayers matching the lipid composition in the E. coli inner membrane. MatP binding to lipids was independently confirmed using lipid-coated microbeads and biolayer interferometry assays, which suggested that the recognition is mainly hydrophobic. Interaction of MatP with the lipid membranes also occurs in the presence of the DNA sequences specifically targeted by the protein, but there is no evidence of ternary membrane/protein/DNA complexes. We propose that the association of MatP with lipids may modulate its spatiotemporal localization and its recognition of other ligands.IMPORTANCE The division of an E. coli cell into two daughter cells with equal genomic information and similar size requires duplication and segregation of the chromosome and subsequent scission of the envelope by a protein ring, the Z-ring. MatP is a DNA binding protein that contributes both to the positioning of the Z-ring at midcell and the temporal control of nucleoid segregation. Our integrated in vivo and in vitro analysis provides evidence that MatP can interact with lipid membranes reproducing the phospholipid mixture in the E. coli inner membrane, without concomitant recruitment of the short DNA sequences specifically targeted by MatP. This observation strongly suggests that the membrane may play a role in the regulation of the function and localization of MatP, which could be relevant for the coordination of the two fundamental processes in which this protein participates, nucleoid segregation and cell division.


Assuntos
Divisão Celular , Membrana Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
8.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30523075

RESUMO

Macromolecular condensation resulting from biologically regulated liquid-liquid phase separation is emerging as a mechanism to organize intracellular space in eukaryotes, with broad implications for cell physiology and pathology. Despite their small size, bacterial cells are also organized by proteins such as FtsZ, a tubulin homolog that assembles into a ring structure precisely at the cell midpoint and is required for cytokinesis. Here, we demonstrate that FtsZ can form crowding-induced condensates, reminiscent of those observed for eukaryotic proteins. Formation of these FtsZ-rich droplets occurs when FtsZ is bound to SlmA, a spatial regulator of FtsZ that antagonizes polymerization, while also binding to specific sites on chromosomal DNA. The resulting condensates are dynamic, allowing FtsZ to undergo GTP-driven assembly to form protein fibers. They are sensitive to compartmentalization and to the presence of a membrane boundary in cell mimetic systems. This is a novel example of a bacterial nucleoprotein complex exhibiting condensation into liquid droplets, suggesting that phase separation may also play a functional role in the spatiotemporal organization of essential bacterial processes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Citocinese/genética , Proteínas do Citoesqueleto/genética , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Sítios de Ligação , Escherichia coli/genética , Extração Líquido-Líquido , Ligação Proteica , Multimerização Proteica
9.
mBio ; 9(3)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921670

RESUMO

ZipA is an essential cell division protein in Escherichia coli Together with FtsA, ZipA tethers dynamic polymers of FtsZ to the cytoplasmic membrane, and these polymers are required to guide synthesis of the cell division septum. This dynamic behavior of FtsZ has been reconstituted on planar lipid surfaces in vitro, visible as GTP-dependent chiral vortices several hundred nanometers in diameter, when anchored by FtsA or when fused to an artificial membrane binding domain. However, these dynamics largely vanish when ZipA is used to tether FtsZ polymers to lipids at high surface densities. This, along with some in vitro studies in solution, has led to the prevailing notion that ZipA reduces FtsZ dynamics by enhancing bundling of FtsZ filaments. Here, we show that this is not the case. When lower, more physiological levels of the soluble, cytoplasmic domain of ZipA (sZipA) were attached to lipids, FtsZ assembled into highly dynamic vortices similar to those assembled with FtsA or other membrane anchors. Notably, at either high or low surface densities, ZipA did not stimulate lateral interactions between FtsZ protofilaments. We also used E. coli mutants that are either deficient or proficient in FtsZ bundling to provide evidence that ZipA does not directly promote bundling of FtsZ filaments in vivo Together, our results suggest that ZipA does not dampen FtsZ dynamics as previously thought, and instead may act as a passive membrane attachment for FtsZ filaments as they treadmill.IMPORTANCE Bacterial cells use a membrane-attached ring of proteins to mark and guide formation of a division septum at midcell that forms a wall separating the two daughter cells and allows cells to divide. The key protein in this ring is FtsZ, a homolog of tubulin that forms dynamic polymers. Here, we use electron microscopy and confocal fluorescence imaging to show that one of the proteins required to attach FtsZ polymers to the membrane during E. coli cell division, ZipA, can promote dynamic swirls of FtsZ on a lipid surface in vitro Importantly, these swirls are observed only when ZipA is present at low, physiologically relevant surface densities. Although ZipA has been thought to enhance bundling of FtsZ polymers, we find little evidence for bundling in vitro In addition, we present several lines of in vivo evidence indicating that ZipA does not act to directly bundle FtsZ polymers.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/ultraestrutura , Citoesqueleto/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Guanosina Trifosfato/metabolismo , Mutação , Multimerização Proteica
10.
Sci Rep ; 7(1): 13707, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057931

RESUMO

ZipA protein from Escherichia coli is one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein. A sedimentation assay was used to measure the equilibrium binding of FtsZ-GDP and FtsZ-GTP to ZipA immobilized at controlled densities on the surface of microbeads coated with a phospholipid mixture resembling the composition of E. coli membrane. We found that for both nucleotide-bound species, the amount of bound FtsZ exceeds the monolayer capacity of the ZipA immobilized beads at high concentrations of free FtsZ. In the case of FtsZ-GDP, equilibrium binding does not appear to be saturable, whereas in the case of FtsZ-GTP equilibrium binding appears to be saturable. The difference between the two modes of binding is attributed to the difference between the composition of oligomers of free FtsZ-GDP and free FtsZ-GTP formed in solution.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Microesferas , Fosfolipídeos/metabolismo , Adsorção , Escherichia coli , Lipossomos/química , Fosfolipídeos/química , Ligação Proteica
11.
Chem Commun (Camb) ; 53(35): 4775-4778, 2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28361149

RESUMO

There is growing interest in analyzing the effect of microenvironments, which may be mimicked through liquid-liquid phase separation (LLPS), on the reactivity of biological macromolecules. We report the encapsulation by microfluidics of the division protein FtsZ and a LLPS system inside microdroplets and their conversion into permeable vesicles (allowing ligand uptake), with higher yield, homogeneity and biomolecular compatibility than those previously described.


Assuntos
Proteínas de Bactérias/química , Citoplasma/química , Proteínas do Citoesqueleto/química , Lipídeos/química , Técnicas Analíticas Microfluídicas , Escherichia coli/química
12.
Sci Rep ; 6: 35140, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725777

RESUMO

The influence of membrane-free microcompartments resulting from crowding-induced liquid/liquid phase separation (LLPS) on the dynamic spatial organization of FtsZ, the main component of the bacterial division machinery, has been studied using several LLPS systems. The GTP-dependent assembly cycle of FtsZ is thought to be crucial for the formation of the septal ring, which is highly regulated in time and space. We found that FtsZ accumulates in one of the phases and/or at the interface, depending on the system composition and on the oligomerization state of the protein. These results were observed both in bulk LLPS and in lipid-stabilized, phase-separated aqueous microdroplets. The visualization of the droplets revealed that both the location and structural arrangement of FtsZ filaments is determined by the nature of the LLPS. Relocation upon depolymerization of the dynamic filaments suggests the protein may shift among microenvironments in response to changes in its association state. The existence of these dynamic compartments driven by phase transitions can alter the local composition and reactivity of FtsZ during its life cycle acting as a nonspecific modulating factor of cell function.


Assuntos
Proteínas de Bactérias/metabolismo , Citoplasma/química , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/química , Transição de Fase , Guanosina Trifosfato/metabolismo , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...