Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomarkers ; 20(6-7): 436-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26616147

RESUMO

Environmental exposure diagnostics use creatinine concentrations in urine aliquots as the internal standard for dilution normalization of all other excreted metabolites when urinary excretion rate data are not available. This is a reasonable approach for healthy adults as creatinine is a human metabolite that is continually produced in skeletal muscles and presumably excreted in the urine at a stable rate. However, creatinine also serves as a biomarker for glomerular filtration rate (efficiency) of the kidneys, so undiagnosed kidney function impairment could affect this commonly applied dilution calculation. The United States Environmental Protection Agency (US EPA) has recently conducted a study that collected approximately 2600 urine samples from 50 healthy adults, aged 19-50 years old, in North Carolina in 2009-2011. Urinary ancillary data (creatinine concentration, total void volume, elapsed time between voids), and participant demographic data (race, gender, height, and body weight) were collected. A representative subset of 280 urine samples from 29 participants was assayed using a new kidney injury panel (KIP). In this article, we investigated the relationships of KIP biomarkers within and between subjects and also calculated their interactions with measured creatinine levels. The aims of this work were to document the analytical methods (procedures, sensitivity, stability, etc.), provide summary statistics for the KIP biomarkers in "healthy" adults without diagnosed disease (distribution, fold range, central tendency, variance), and to develop an understanding as to how urinary creatinine level varies with respect to the individual KIP proteins. Results show that new instrumentation and data reduction methods have sufficient sensitivity to measure KIP levels in nominally healthy urine samples, that linear regression between creatinine concentration and urinary excretion explains only about 68% of variability, that KIP markers are poorly correlated with creatinine (r(2) ∼ 0.34), and that statistical outliers of KIP markers are not random, but are clustered within certain subjects. In addition, we interpret these new adverse outcome pathways based in vivo biomarkers for their potential use as intermediary chemicals that may be diagnostic of kidney adverse outcomes to environmental exposure.


Assuntos
Biomarcadores/urina , Creatinina/urina , Nefropatias/diagnóstico , Nefropatias/urina , Adulto , Algoritmos , Feminino , Humanos , Nefropatias/fisiopatologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Valores de Referência , Sensibilidade e Especificidade , Estados Unidos , United States Environmental Protection Agency , Adulto Jovem
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 878(21): 1753-60, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20488767

RESUMO

Humans experience chronic cumulative trace-level exposure to mixtures of volatile, semi-volatile, and non-volatile polycyclic aromatic hydrocarbons (PAHs) present in the environment as by-products of combustion processes. Certain PAHs are known or suspected human carcinogens and so we have developed methodology for measuring their circulating (blood borne) concentrations as a tool to assess internal dose and health risk. We use liquid/liquid extraction and gas chromatography-mass spectrometry and present analytical parameters including dynamic range (0-250 ng/ml), linearity (>0.99 for all compounds), and instrument sensitivity (range 2-22 pg/ml) for a series of 22 PAHs representing 2-6-rings. The method is shown to be sufficiently sensitive for estimating PAHs baseline levels (typical median range from 1 to 1000 pg/ml) in groups of normal control subjects using 1-ml aliquots of human plasma but we note that some individuals have very low background concentrations for 5- and 6-ring compounds that fall below robust quantitation levels.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/sangue , Fracionamento Químico , Exposição Ambiental , Congelamento , Hexanos , Humanos , Análise de Regressão
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(29): 3652-8, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19797001

RESUMO

Polar volatile organic compounds (PVOCs) such as aldehydes and alcohols are byproducts of normal human metabolism and thus are found in blood and exhaled breath. Perturbation of the normal patterns of such metabolites may reflect exposures to environmental stressors, disease state, and human activity. Presented herein is a specific methodology for assaying PVOC biomarkers in exhaled breath condensate (EBC) samples with application to a series of samples from a controlled chamber exposure to dilute diesel exhaust (DE) or to purified air. The collection/analysis method is based on condensation of normal (at rest) exhaled breaths for 10 min (resulting in 1-2 ml of liquid) with subsequent analyte adsorption onto Tenax cartridges followed by thermal desorption and analysis by gas chromatography/mass spectrometry (GC/MS). Analytical data have linearity of response (R(2)>0.98) across a range of 0-160 ng/ml with a detection limit ranging from 0.2 to 7 ng/ml depending on the compound. Statistical analyses of the results of the controlled exposure study indicate that metabolism, as reflected in simple breath-borne oxygenated species, is not affected by exposure to ambient airborne levels of DE. Linear mixed-effects models showed that PVOC biomarker levels are affected by gender and vary significantly among nominally healthy subjects. Differences among PVOCs analyzed in clinic air, purified chamber air, and chamber air containing dilute DE confirm that most of the compounds are likely of endogenous origin as the exogenous exposure levels did not perturb the EBC measurements.


Assuntos
Expiração , Emissões de Veículos/toxicidade , Compostos Orgânicos Voláteis/análise , Adsorção , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Modelos Teóricos
4.
Occup Environ Med ; 66(2): 99-104, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19017700

RESUMO

OBJECTIVES: The study investigated the utility of unmetabolised naphthalene (Nap) and phenanthrene (Phe) in urine as surrogates for exposures to mixtures of polycyclic aromatic hydrocarbons (PAHs). METHODS: The report included workers exposed to diesel exhausts (low PAH exposure level, n = 39) as well as those exposed to emissions from asphalt (medium PAH exposure level, n = 26) and coke ovens (high PAH exposure level, n = 28). Levels of Nap and Phe were measured in urine from each subject using head space-solid phase microextraction and gas chromatography-mass spectrometry. Published levels of airborne Nap, Phe and other PAHs in the coke-producing and aluminium industries were also investigated. RESULTS: In post-shift urine, the highest estimated geometric mean concentrations of Nap and Phe were observed in coke-oven workers (Nap: 2490 ng/l; Phe: 975 ng/l), followed by asphalt workers (Nap: 71.5 ng/l; Phe: 54.3 ng/l), and by diesel-exposed workers (Nap: 17.7 ng/l; Phe: 3.60 ng/l). After subtracting logged background levels of Nap and Phe from the logged post-shift levels of these PAHs in urine, the resulting values (referred to as ln(adjNap) and ln(adjPhe), respectively) were significantly correlated in each group of workers (0.71 < or = Pearson r < or = 0.89), suggesting a common exposure source in each case. Surprisingly, multiple linear regression analysis of ln(adjNap) on ln(adjPhe) showed no significant effect of the source of exposure (coke ovens, asphalt and diesel exhaust) and further suggested that the ratio of urinary Nap/Phe (in natural scale) decreased with increasing exposure levels. These results were corroborated with published data for airborne Nap and Phe in the coke-producing and aluminium industries. The published air measurements also indicated that Nap and Phe levels were proportional to the levels of all combined PAHs in those industries. CONCLUSION: Levels of Nap and Phe in urine reflect airborne exposures to these compounds and are promising surrogates for occupational exposures to PAH mixtures.


Assuntos
Monitoramento Ambiental/métodos , Naftalenos/urina , Exposição Ocupacional/análise , Fenantrenos/urina , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Ocupacionais do Ar/análise , Biomarcadores/urina , Humanos , Indústrias , Exposição por Inalação/análise , Masculino , Naftalenos/análise , Fenantrenos/análise , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...