Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1400630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135897

RESUMO

Introduction: Claw lesions significantly contribute to lameness, greatly affecting sow welfare. This study investigated different factors that would impact the severity of claw lesions in the sows of Brazilian commercial herds. Methods: A total of 129 herds (n = 12,364 sows) were included in the study. Herds were in the Midwest, Southeast, or South regions of Brazil. Inventory sizes were stratified into 250-810 sows, 811-1,300 sows, 1,301-3,000 sows, and 3,001-10,000 sows. Herds belonged to Cooperative (Coop), Integrator, or Independent structures. The herd management was conducted either maintaining breeds from stock on-site (internal), or through purchase of commercially available genetics (external). Herds adopted either individual crates or group housing during gestation. Within each farm, one randomly selected group of sows was scored by the same evaluator (two independent experts evaluated a total of 129 herds) from 0 (none) to 3 (severe) for heel overgrowth and erosion (HOE), heel-sole crack (HSC), separation along the white line (WL), horizontal (CHW) and vertical (CVW) wall cracks, and overgrown toes (T), or dewclaws (DC) in the hind legs after parturition. The study assessed differences and similarities between herds using Principal Component Analysis (PCA) and Hierarchical Agglomerative Clustering (HAC) analysis. The effects of factors (i.e., production structure, management, housing during gestation, and region) were assessed using the partial least squares method (PLS). Results and discussion: Heel overgrowth and erosion had the highest prevalence, followed by WL and CHW, while the lowest scores were observed for T, DC, and CVW. Herds were grouped in three clusters (i.e., C1, C2, and C3). Heel overgrowth and erosion, HSC, WL, CHW, CVW, and T were decreased by 17, 25, 11, 25, 21, and 17%, respectively, in C3 compared to C1 and 2 combined. Independent structure increased the L-Index in all three clusters. Furthermore, individual housing increased the L-Index regardless of the cluster. The results suggest that shifting toward larger, more technologically advanced herds could potentially benefit claw health. Additionally, adopting group gestation housing appears to mitigate the adverse effects on claw health, although further validation is necessary, as Brazil has only recently transitioned from individual housing practices.

2.
Animals (Basel) ; 13(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37443904

RESUMO

Vitamin B12 plays a role in the remethylation of homocysteine to Met, which then serves as a substrate for Met adenosyltransferase (MAT) to synthesize S-adenosylmethionine (SAM). We investigated effects of feeding two cobalt sources [Co-glucoheptonate (CoPro) or CoPectin, Zinpro Corp.], an experimental ruminally-available source of folic acid (FOA), and rumen-protected Met (RPM) on performance and hepatic one-carbon metabolism in peripartal Holstein cows. From -30 to 30 d around calving, 72 multiparous cows were randomly allocated to: CoPro, CoPro + FOA, CoPectin + FOA, or CoPectin + FOA + RPM. The Co treatments delivered 1 mg Co/kg of DM (CoPro or CoPectin), each FOA group received 50 mg/d FOA, and RPM was fed at 0.09% of DM intake (DMI). Milk yield and DMI were not affected. Compared with other groups, the percentage of milk protein was greater after the second week of lactation in CoPectin + FOA + RPM. Compared with CoPro or CoPro + FOA, feeding CoPectin + FOA or CoPectin + FOA + RPM led to a greater activity of MAT at 7 to 15 d postcalving. For betaine-homocysteine S-methyltransferase, CoPro together with CoPectin + FOA + RPM cows had greater activity at 7 and 15 d than CoPro + FOA. Overall, supplying FOA with CoPectin or CoPectin plus RPM may enhance S-adenosylmethionine synthesis via MAT in the liver after parturition. As such, these nutrients may impact methylation reactions and liver function.

3.
Transl Anim Sci ; 6(1): txac005, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35198860

RESUMO

Three experiments were conducted with growing wethers to evaluate apparent excretion and retention of Zn from various sources. In experiments 1 and 2, Zn-ethylene diamine (ZE), Zn hydroxychloride (ZHYD), Zn-lysine/glutamate (ZAA), and Zn-glycinate (ZG) were used and ZnSO4 (ZS), ZHYD, ZAA, and ZG were used in experiment 3. In experiment 1, eight wethers were used in a replicated 4 × 4 Latin square design. In experiments 2 and 3, 40 wethers were used in a randomized block design. In experiment 1, each period (total four periods) consisted of 14-d diet adaptation and 4 d of total collection of feces and urine. In experiments 2 and 3, wethers received a basal diet for 14 d and received experimental diets for 9 d (diet adaptation), followed by 4 d of total collection of feces and urine. Total collection was conducted in wooden metabolic cages. All data were analyzed using the MIXED procedure of SAS as a Latin square design for experiment 1 and a completed randomized block design for experiments 2 and 3. In all experiments, dry matter intake did not differ among treatments except that it tended to be different in experiment 2. In experiment 1, no difference in Zn excretion (88%) and retention (11%) as proportion of Zn intake was observed among Zn sources. In experiment 2, total tract digestibility of crude protein was greater (P < 0.01) for ZAA than ZE and ZG (82.0% vs. 79.1% and 77.8%, respectively) and greater (P < 0.01) for ZHYD than ZG (80.2% vs. 77.8%). However, total tract digestibility of neutral detergent fiber was low (on average 16%) for all treatments with no difference among treatments in experiment 2. Apparent excretion and retention of Zn as proportion of Zn intake did not differ among treatments, and Zn retention (~1.4% of Zn intake) was very low for all treatments. In experiment 3, ZHYD and ZAA had greater retention of Zn (17.8% vs. 1.5%; P = 0.01) than ZG. Fecal Zn excretion was greater (97.3% vs. 81.2%; P = 0.01) for ZG vs. ZHYD and ZAA, and Zn retention for ZG was only 1.5% of Zn intake. In conclusion, potential increases in Zn absorption and retention were observed for ZHYD and ZAA compared with ZS and ZG in experiment 3 and these differences were not found in experiments 1 and 2. Experiment 1 used a Latin square design and experiment 2 used a diet containing largely undigestible fiber. These experimental conditions may have affected Zn metabolism in wethers. Inconsistent results on Zn balance for ZG among the experiments warrant further studies regarding its bioavailability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA