Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(13): 4786-4886, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35297919

RESUMO

Ferrofluids investigated along for about five decades are ultrastable colloidal suspensions of magnetic nanoparticles, which manifest simultaneously fluid and magnetic properties. Their magnetically controllable and tunable feature proved to be from the beginning an extremely fertile ground for a wide range of engineering applications. More recently, biocompatible ferrofluids attracted huge interest and produced a considerable increase of the applicative potential in nanomedicine, biotechnology and environmental protection. This paper offers a brief overview of the most relevant early results and a comprehensive description of recent achievements in ferrofluid synthesis, advanced characterization, as well as the governing equations of ferrohydrodynamics, the most important interfacial phenomena and the flow properties. Finally, it provides an overview of recent advances in tunable and adaptive multifunctional materials derived from ferrofluids and a detailed presentation of the recent progress of applications in the field of sensors and actuators, ferrofluid-driven assembly and manipulation, droplet technology, including droplet generation and control, mechanical actuation, liquid computing and robotics.

2.
Soft Matter ; 18(3): 626-639, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34931628

RESUMO

High magnetization Fe3O4/OA-FeCo/Al2O3 nanocomposite magnetic clusters have been obtained using a modified oil-in-water miniemulsion method. These nanocomposite clusters dispersed in a ferrofluid carrier result in a magnetorheological fluid with improved characteristics. The magnetic clusters have a magnetic core consisting of a mixture of magnetite nanoparticles of about 6 nm average size, stabilized with oleic acid (Fe3O4/OA) and FeCo/Al2O3 particles of about 50 nm average size, compactly packed in the form of spherical clusters with a diameter distribution in the range 100-300 nm and a hydrophilic coating of sodium lauryl sulphate surfactant. The surface chemical composition of the Fe3O4/OA-FeCo/Al2O3 clusters investigated by XPS indicates the presence of the Co2+ and Co3+ oxidation states of cobalt and the components of Fe2+ and Fe3+ characteristic to both an enhanced oxidation state at the surface of the FeCo particles and to the presence of magnetic nanoparticles of spinel structure which are decorating the supporting FeCo. This specific decorating morphology is also indicated by TEM images. Advanced characterization of the Fe3O4/OA-FeCo/Al2O3 magnetic clusters has been performed using Mössbauer spectroscopy and magnetization measurements at various temperatures between 6 K and 200 K. The unexpected formation of Co ferrite decorating nanoparticles was supported by Mössbauer spectroscopy. The dispersion of magnetic clusters in the ferrofluid carrier highly influences the flow properties in the absence of the field (shear thinning for low and moderate shear rates) and especially in applied magnetic field, when significant magnetoviscous effect and shear thinning was observed for the whole range of shear rate values. Detailed analysis of the magnetorheological behavior of the nanocomposite magnetic clusters dispersed in a ferrofluid carrier evidence significantly higher normalized dynamic yield stress values in comparison with the magnetite nanocluster suspensions of the same mass concentration, a promising result for this new type of nanocomposite magnetorheological fluid.

3.
Nanomaterials (Basel) ; 10(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178410

RESUMO

The preparation procedure of zero magnetic remanence superparamagnetic white paper by means of three-layer membrane configuration (sandwiched structure) is presented. The cellulose acetate fibrous membranes were prepared by electrospinning. The middle membrane layer was magnetically loaded by impregnation with an aqueous ferrofluid of 8 nm magnetic iron oxide nanoparticles colloidally stabilized with a double layer of oleic acid. The nanoparticles show zero magnetic remanence due to their very small diameters and their soft magnetic properties. Changing the ferrofluid magnetic nanoparticle volume fraction, white papers with zero magnetic remanence and tunable saturation magnetization in the range of 0.5-3.5 emu/g were prepared. The dark coloring of the paper owing to the presence of the black magnetite nanoparticles was concealed by the external layers of pristine white cellulose acetate electrospun fibrous membranes.

4.
Soft Matter ; 14(32): 6648-6666, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30035279

RESUMO

This paper is an in-depth analysis devoted to two basic types of water based magnetic fluids (MFs), containing magnetite nanoparticles with electrostatic and with electro-steric stabilization, both obtained by chemical coprecipitation synthesis under atmospheric conditions. The two sets of magnetic fluid samples, one with citric acid (MF/CA) and the other with oleic acid (MF/OA) coated magnetic nanoparticles, respectively, achieved saturation magnetization values of 78.20 kA m-1 for the electrostatically and 48.73 kA m-1 for the electro-sterically stabilized aqueous ferrofluids which are among the highest reported to date. A comprehensive comparative analysis combining electron microscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy, vibrating sample magnetometry, small-angle X-ray and neutron scattering, dynamic light scattering and magneto-rheometry revealed similarities and essential differences on the microscopic and macroscopic level between the two kinds of water-based ferrofluids. While the saturation magnetization values are quite different, the hydrodynamic volume fractions of the highest concentration MF/CA and MF/OA samples are practically the same, due to the significantly different thicknesses of the particles' coating layers. The results of volume fraction dependent structure analyses over a large concentration range by small-angle X-ray and neutron scattering, correlated with magneto-rheological investigations for the electrostatically stabilized MFs, demonstrate formation of short chains of magnetic nanoparticles which are relatively stable against coagulation with increasing concentration, while for MFs with electro-steric stabilization, magnetic field and shear rate dependent loosely bound structures are observed. These particle structures in MF/OA samples manifest themselves already at low volume fraction values, which can be attributed mainly to magnetic interactions of larger size particles, besides non-magnetic interactions mediated by excess surfactant.

5.
J Colloid Interface Sci ; 373(1): 110-5, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22134213

RESUMO

In this paper the particle volume fraction and temperature dependence of the dynamic viscosity of highly concentrated transformer oil based magnetic nanofluids was investigated in the absence of an external magnetic field. The solid particle volume fraction dependence of the relative viscosity was found to be very well fitted by the Krieger-Dougherty formula, whence the mean ellipticity of the colloidal particles and the effective surfactant layer thickness were obtained. Using the information on the particles' size and shape statistics obtained from TEM, DLS and magnetogranulometry investigations, it was concluded that the magnetite nanoparticles agglomerate in small clusters of about 1.3 particles/cluster, due to the van der Waals interactions. The effective thickness of the oleic acid surfactant layer was estimated as about 1.4 nm, in very good agreement with the value resulted from previous SANS investigations.

6.
J Colloid Interface Sci ; 264(1): 141-7, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12885530

RESUMO

The volume fraction dependence of the static magnetization of two magnetic fluids with different degrees of steric stabilization was measured at low field values (0-10 kA/m) and it was found to be nonlinear for both magnetic fluids. The nonlinearity is more pronounced in the case of the less stabilized magnetic fluid. The experimental data were processed by nonlinear regression using an analytical model for the formation of chain-like magnetic particle aggregates in magnetic fluids. The calculated dependence on the degree of steric stabilization, magnetic field, and sample concentration of the mean number of particles per chain was in the range (1-1.04).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...