Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(40): 8347-8353, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769184

RESUMO

We report a study of the temperature dependence of 35Cl nuclear quadrupole resonance (NQR) transition energies and spin-lattice relaxation times (T1) for 235U-depleted dicesium uranyl tetrachloride (Cs2UO2Cl4) aimed at elucidating electronic interactions between the uranium center and atoms in the equatorial plane of the UO22+ ion. The transition frequency decreases slowly with temperature below 75 K and with a more rapid linear dependence above this temperature. The spin-lattice relaxation time becomes shorter with temperature, and as temperatures increase, the T1 decrease becomes nearly quadratic. The observed trends are reproduced by a model that assumes phonon-induced fluctuations of the electric field gradient tensor and partial electron delocalization from Cl to U. The fit of the theoretical model to experimental data allows a Debye temperature of 96 K to be estimated. The generalization of this approach to investigations of covalency in actinide-ligand bonding is examined.

2.
Inorg Chem ; 61(9): 3821-3831, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34817159

RESUMO

Electric field gradient (EFG) tensors in the equatorial plane of the linear UO22+ ion have been measured by nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) experiments and computed by relativistic Kohn-Sham methods with and without environment embedding for Cs2UO2Cl4 and Cs2UO2Br4. This approach expands the possibilities for probing the electronic structure in uranyl complexes beyond the strongly covalent U-O bonds. The combined analyses find that one of the two largest principal EFG tensor components at the halogen sites points along the U-X bond (X = Cl, Br), and the second is parallel to the UO22+ ion; in Cs2UO2Cl4, the components are nearly equal in magnitude, whereas in Cs2UO2Br4, due to short-range bromide-cesium interactions, the equatorial component is dominant for one pair of Br sites and the axial component is larger for the second pair. The directions and relative magnitudes of the field gradient principal axes are found to be sensitive to the σ and π electron donation by the ligands and the model of the environment. Chlorine-35 NQR spectra of 235U-depleted and 235U-enriched Cs2UO2Cl4 exhibited no uranium-isotope-dependent shift, but the resonance of the depleted sample displayed a 58% broader line width.

3.
J Chem Phys ; 154(21): 211101, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240987

RESUMO

Fluorine-19 magnetic shielding tensors have been measured in a series of actinide tetrafluorides (AnF4) by solid state nuclear magnetic resonance spectroscopy. Tetravalent actinide centers with 0-8 valence electrons can form tetrafluorides with the same monoclinic structure type, making these compounds an attractive choice for a systematic study of the variation in the electronic structure across the 5f row of the Periodic Table. Pronounced deviations from predictions based on localized valence electron models have been detected by these experiments, which suggests that this approach may be used as a quantitative probe of electronic correlations.

4.
RSC Adv ; 10(6): 3472-3478, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35497761

RESUMO

Production of the important 99mTc medical isotope parent, molybdenum-99 (99Mo), via the fissioning of high- and low-enriched uranium (HEU/LEU) targets followed by target dissolution in acid and solution-phase purification of 99Mo is time-consuming, generates quantities of corrosive radioactive waste, and can result in the release of an array of radionuclides to the atmosphere. An alternative 99Mo purification method has been devised that has the potential to alleviate many of these issues. Herein, we demonstrate the feasibility of a rapid Mo/Tc gas-phase separation from UO2. The results indicate that volatile [99Mo]Mo can be captured downstream of the reacted solid mixture on a column bed (trap) of alumina; the majority of the captured [99Mo]Mo can be subsequently eluted from the alumina trap with a few milliliters of water. >1.0 × 105 single pass decontamination of U and the collected [99Mo]Mo product is demonstrated. This simple thermo-fluorination technique has the potential to provide a rapid methodology for routine 99Mo production.

5.
Anal Chem ; 91(10): 6522-6529, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31018634

RESUMO

We report elemental and isotopic analysis for the noble metal fission product phase found in irradiated nuclear fuel. The noble metal phase was isolated from three commercial irradiated UO2 fuels by chemically dissolving the UO2 fuel matrix, leaving the noble metal phase as the undissolved residue. Macro amounts of this residue were dissolved using a KOH + KNO3 fusion and then chemically separated into individual elements for analysis by mass spectrometry. Though the composition of this phase has been previously reported, this work is the most comprehensive chemical analysis of the isolated noble metal phase to date. We report both elemental and isotopic abundances of the five major components of the noble metal phase (Mo, Tc, Ru, Rh, Pd). In addition, we report a sixth element present in high quantities in this phase, tellurium. Tellurium appears to be an integral component of noble metal particles.

6.
Environ Sci Technol ; 52(14): 7796-7804, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29895141

RESUMO

The quantitative conversion of nonpertechnetate [Tc(CO)3]+ species in nuclear waste storage tank 241-AN-102 at the Hanford Site is demonstrated. A waste sample containing the [Tc(CO)3]+ species is added to a developer solution that rapidly converts the nonemissive species into a luminescent complex, which is detected spectroscopically. This method was first demonstrated using a [Tc(CO)3]+ sample of nonwaste containing matrix to determine a detection limit (LOD), resulting in a [Tc(CO)3]+ LOD of 2.20 × 10-7 M, very near the LOD of the independently synthesized standard (2.10 × 10-7 M). The method was then used to detect [Tc(CO)3]+ in a simulated waste using the standard addition method, resulting in a [Tc(CO)3]+ concentration of 1.89 × 10-5 M (within 27.7% of the concentration determined by ß liquid scintillation counting). Three samples from 241-AN-102 were tested by the standard addition method: (1) a 5 M Na adjusted fraction, (2) a fraction depleted of 137Cs, and (3) an acid-stripped eluate. The concentrations of [Tc(CO)3]+ in these fractions were determined to be 9.90 × 10-6 M (1), 0 M (2), and 2.46 × 10-6 M (3), respectively. The concentration of [Tc(CO)3]+ in the as-received AN-102 tank waste supernatant was determined to be 1.84 × 10-5 M.


Assuntos
Resíduos Radioativos , Animais , Suínos
7.
RSC Adv ; 8(33): 18227-18233, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35541118

RESUMO

During electron microscopy observations of uranium-bearing phases and solutions in a liquid cell, the electron beam induced radiolysis causes changes in the chemistry of the system. This could be useful for investigating accelerated alteration of UO2 and can be also used to monitor radiolytic effects. Low concentrations of bromide in aqueous solutions are known to reduce the generation rate of H2O2 during radiolysis and increase H2 production. We deduced the presence of radiolytic H2O2 by monitoring the formation of a uranyl peroxide solid from both solid UO2 and a solution of ammonium uranyl carbonate at neutral pH. Additionally, the effect of bromine on water radiolysis was investigated through chemical modelling and in situ electron microscopy. By measuring the contrast in the electron microscopy images it was possible to monitor H2O2 formation and diffusion from the irradiated zone in agreement with the models.

8.
Inorg Chem ; 56(5): 2533-2544, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28221786

RESUMO

Insight into the solid-state chemistry of pure technetium-99 (99Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorption spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of 99Tc incorporation into and release from nuclear waste glasses. NaTcO4 shows aspects of the relatively higher electronegativity of the Na atom, resulting in large distortions of the pertechnetate tetrahedron and deshielding of the 99Tc nucleus relative to the aqueous TcO4-. At the other extreme, the large Cs and Rb atoms interact only weakly with the pertechnetate, have closer to perfect tetrahedral symmetry at the Tc atom, and have very similar vibrational spectra, even though the crystal structure of CsTcO4 is orthorhombic while that of RbTcO4 is tetragonal. Further trends are observed in the cell volume and quadrupolar coupling constant.

9.
J Phys Chem A ; 118(51): 12105-10, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25423148

RESUMO

We report on a subtle global feature of the mass action kinetics equations for water radiolysis that results in predictions of a critical behavior in H2O2 and associated radical concentrations. While radiolysis kinetics have been studied extensively in the past, it is only in recent years that high-speed computing has allowed the rapid exploration of the solution over widely varying dose and compositional conditions. We explore the radiolytic production of H2O2 under various externally fixed conditions of molecular H2 and O2 that have been regarded as problematic in the literature-specifically, "jumps" in predicted concentrations, and inconsistencies between predictions and experiments have been reported for α radiolysis. We computationally map-out a critical concentration behavior for α radiolysis kinetics using a comprehensive set of reactions. We then show that all features of interest are accurately reproduced with 15 reactions. An analytical solution for steady-state concentrations of the 15 reactions reveals regions in [H2] and [O2] where the H2O2 concentration is not unique-both stable and unstable concentrations exist. The boundary of this region can be characterized analytically as a function of G-values and rate constants independent of dose rate. Physically, the boundary can be understood as separating a region where a steady-state H2O2 concentration exists from one where it does not exist without a direct decomposition reaction. We show that this behavior is consistent with reported α radiolysis data and that no such behavior should occur for γ radiolysis. We suggest experiments that could verify or discredit a critical concentration behavior for α radiolysis and could place more restrictive ranges on G-values from derived relationships between them.

10.
Appl Radiat Isot ; 82: 158-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24001618

RESUMO

Gadolinium-153 is a low-energy gamma-emitter used in nuclear medicine imaging quality assurance. Produced in nuclear reactors using natural Eu2O3 targets, ¹5³Gd is radiochemically separated from europium isotopes by europium reduction. However, conventional aqueous europium reduction produces hydrogen gas, a flammability hazard in radiological hot cells. We altered the traditional reduction method, using methanol as the process solvent to nearly eliminate hydrogen gas production. This new, non-aqueous reduction process demonstrates greater than 98% europium removal and gadolinium yields of 90%.


Assuntos
Európio/isolamento & purificação , Gadolínio/isolamento & purificação , Radioisótopos/isolamento & purificação , Desenho de Equipamento , Gadolínio/normas , Humanos , Metanol , Medicina Nuclear/instrumentação , Medicina Nuclear/métodos , Medicina Nuclear/normas , Radioisótopos/normas , Compostos Radiofarmacêuticos/isolamento & purificação , Solventes , Tomografia Computadorizada de Emissão de Fóton Único/normas
11.
Curr Radiopharm ; 5(3): 244-52, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22697483

RESUMO

Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development.


Assuntos
Actínio , Berílio , Geradores de Radionuclídeos , Compostos Radiofarmacêuticos/isolamento & purificação , Rádio (Elemento)/isolamento & purificação , Partículas alfa/uso terapêutico , Resinas de Troca Aniônica , Humanos , Neoplasias/radioterapia , Nêutrons , Controle de Qualidade , Radioatividade , Compostos Radiofarmacêuticos/síntese química
12.
J Chem Phys ; 132(8): 084501, 2010 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-20192301

RESUMO

A combined theoretical and solid-state (17)O nuclear magnetic resonance (NMR) study of the electronic structure of the uranyl ion UO(2)(2+) in (NH(4))(4)UO(2)(CO(3))(3) and rutherfordine (UO(2)CO(3)) is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens and the latter exemplifying a uranyl environment without hydrogens. Relativistic density functional calculations reveal unique features of the U-O covalent bond, including the finding of (17)O chemical shift anisotropies that are among the largest for oxygen ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state (17)O NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the (17)O echo signal of U (17)O(2)(2+).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...