Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902456

RESUMO

Large central arterial stiffness is a risk factor for cerebrovascular damage and subsequent progression of neurodegenerative diseases, including Alzheimer's disease and dementia. However, arterial stiffness is determined by both the intrinsic components of the arterial wall (structural stiffness) and the load (i.e., arterial blood pressure) exerted upon it by the blood (load-dependent stiffness). This study aimed to determine the degree to which structural and/or load-dependent mechanisms of central arterial stiffness are associated with cerebrovascular damage. Among 128 healthy individuals (aged 63±6, age range: 50-80 years, 42% men), aortic and carotid artery stiffness was measured via carotid-femoral pulse wave velocity and B-mode ultrasonography, respectively. Using participant-specific exponential models, both aortic and carotid artery stiffness were standardized to a reference blood pressure to separate their structural and load-dependent stiffness mechanisms. Magnetic resonance imaging was used to derive total, periventricular, and deep cerebral white matter lesion volume (WMLV) and global cortical thickness. After adjusting for common cardiovascular disease risk factors, a 1 m/s increase in structural aortic stiffness was associated with 15% greater total WMLV (95% confidence interval [CI] = 0.01, 0.27, P = 0.036), 14% greater periventricular WMLV (95%CI = 0.004, 0.25, P = 0.044) and 0.011mm lower cortical thickness (95%CI = -0.022, -1.18, P = 0.028). No association was observed between structural carotid stiffness and WMLVs (total, periventricular, and deep), and neither aortic nor carotid load-dependent stiffness was associated with WMLVs or cortical thickness. Structural, not load-dependent, mechanisms of aortic stiffness are related to cerebrovascular-related white matter damage.

2.
Neuroimage ; 245: 118682, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34728245

RESUMO

The hippocampus is negatively affected by aging and is critical for spatial navigation. While there is evidence that wayfinding navigation tasks are especially sensitive to preclinical hippocampal deterioration, these studies have primarily used volumetric hippocampal imaging without considering microstructural properties or anatomical variation within the hippocampus. T1ρ is an MRI measure sensitive to regional pH, with longer relaxation rates reflecting acidosis as a marker of metabolic dysfunction and neuropathological burden. For the first time, we investigate how measures of wayfinding including landmark location learning and delayed memory in cognitively normal older adults (N = 84) relate to both hippocampal volume and T1ρ in the anterior and posterior hippocampus. Regression analyses revealed hippocampal volume was bilaterally related to learning, while right lateralized T1ρ was related to delayed landmark location memory and bilateral T1ρ was related to the delayed use of a cognitive map. Overall, results suggest hippocampal volume and T1ρ relaxation rate tap into distinct mechanisms involved in preclinical cognitive decline as assessed by wayfinding navigation, and laterality influenced these relationships more than the anterior-posterior longitudinal axis of the hippocampus.


Assuntos
Envelhecimento/patologia , Hipocampo/patologia , Navegação Espacial/fisiologia , Idoso , Idoso de 80 Anos ou mais , Cognição , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
3.
Behav Neurosci ; 135(4): 498-517, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33661657

RESUMO

Modern nonhuman animal research on the rapid forgetting of memories formed early in life-often termed "infantile amnesia"-has focused on neurobiological changes occurring between learning and retention testing to explain age differences in memory. Developmental differences in initial learning have received less attention as a contributing factor to infantile amnesia effects. The present study identifies conditions under which associative learning and memory are comparable between pre and postweaning rats across multiple training-testing intervals. Postnatal day (P) 17-18 or P24-25 littermates were trained with white noise conditional stimuli (CSs) alone, forward-paired, or explicitly unpaired with floor shock unconditional stimuli (USs), and tested for retention at intervals ranging between 5 min and 15 days later. Findings from within- and across-institution replications revealed that age differences in CS freezing were influenced by (a) the associative nature of the CS and US at training, (b) the number of CS, US presentations at training, and (c) the interval between training and testing. Rats trained on P17 or 18 displayed robust retention comparable to rats trained on P24 or 25 only when training in younger rats involved additional forward-paired CS-US presentations. Poor long-term retention observed at multiple training-testing intervals in rats trained on P17 or 18 was overcome with many additional forward-paired CS-US presentations at training. Conditions necessary for appropriate developmental comparisons of learning and memory relevant to the future neurobiological studies are discussed. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Condicionamento Clássico , Medo , Animais , Ratos
4.
Trends Cogn Sci ; 23(4): 318-333, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30777641

RESUMO

No medications prevent or reverse age-related cognitive decline. Physical activity (PA) enhances memory in rodents, but findings are mixed in human studies. As a result, exercise guidelines specific for brain health are absent. Here, we re-examine results from human studies, and suggest the use of more sensitive tasks to evaluate PA effects on age-related changes in the hippocampus, such as relational memory and mnemonic discrimination. We discuss recent advances from rodent and human studies into the underlying mechanisms at both the central and peripheral levels, including neurotrophins and myokines that could contribute to improved memory. Finally, we suggest guidelines for future research to help expedite well-founded PA recommendations for the public.


Assuntos
Envelhecimento/fisiologia , Exercício Físico/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...