Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 12(1): 54-58, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36566385

RESUMO

Biodegradable epoxy thermosets were developed by curing through copolymerization of a diglycidate monomer, a bifunctional epoxide bearing ester linkages, with cyclic acid anhydrides as a biosafe thermosetting system. The cured products of the glycidate exhibit high adhesiveness, identical to analogous cured products of conventional glycidyl ethers. Even an inert cycloolefin polymer and polyimide can be adhered. The cured products of the glycidate can be hydrolytically and biologically degraded. The biodegradation of the glycidate thermoset in compost completely proceeded within 2 weeks.


Assuntos
Anidridos , Polímeros , Adesividade , Resinas Epóxi
2.
Polymers (Basel) ; 14(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35267778

RESUMO

This paper reports that glycidates bearing epoxy moieties with adjacent ester can be cured with diethylenetriamine (DETA) under mild conditions and exhibit high adhesiveness. Curing of bifunctional glycidates with DETA gave cross-linked products. The curing started at a lower temperature (7 °C) than the analogous glycidyl ether (27 °C), while the rate of the curing was slower due to the lower activation energy (Ea = 57 kJ/g) and exothermicity (ΔH = 58 J/g) as confirmed by DSC analysis. The curing system of neopentyl glycol diglycidate and DETA effectively adhered aluminum plates by curing at 25 °C, and the strength was more than five times higher than the curing with analogous glycidyl ether. The higher adhesive strength under curing of ambient conditions and facile preparation of monomers are the significant advantages of this curing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...