Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(37): 23755-23761, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984694

RESUMO

The miscibility at the interphase of polymer-grafted nanocellulose/cellulose triacetate (CTA) composite films was tailored using different casting solvents. The polymer-grafted cellulose nanofibrils were prepared by modifying surfaces of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized nanocellulose with amine-terminated poly(ethylene glycol) (PEG). The PEG-grafted nanocelluloses were individually dispersed in dichloromethane, 1,4-dioxane, and N,N-dimethylacetamide. The PEG-grafted nanocellulose/CTA composite films were prepared by mixing the nanocellulose dispersion and CTA solution and subsequent casting-drying. The miscibility of PEG and CTA at the interphase of the composite was controlled by controlling the solvent, which was confirmed by dynamic mechanical analysis. All the composite films showed high optical transparency. However, the mechanical properties of the composites differed because of the difference in the PEG/CTA interfacial miscibility. The composite films with better PEG/CTA interfacial miscibility showed higher Young's modulus, strength, and toughness. This interfacial design technique paves the way to exploiting the reinforcing potential of highly transparent and hydrophobic surface-grafted nanocellulose/polymer composite materials.

2.
Front Chem ; 8: 68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117891

RESUMO

We report the anisotropic thermal expansion of a transparent nanopaper structure comprising cellulose nanofibers (CNFs). The coefficient of thermal expansion (CTE) of the nanopaper in the out-of-plane direction was 44.6 ppm/°C in the temperature range of 25-100°C, which is approximately five times larger than its CTE in the in-plane direction in the same temperature range (8.3 ppm/°C). Such a strong anisotropy in thermal expansion is mainly attributable to the anisotropic CTE values of single CNFs in the fiber axis and cross-sectional directions. We observed anisotropic thermal expansion even in a bioplastic composite containing only 2.5% w/w CNFs.

3.
ACS Omega ; 3(9): 11883-11889, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459274

RESUMO

Careful design of the structures of interfaces between nanofillers and polymer matrices can significantly improve the mechanical and thermal properties of the overall nanocomposites. Here, we investigate how the grafting density on the surface of nanocelluloses influences the properties of nanocellulose/cellulose triacetate (CTA) composites. The surface of nanocellulose, which was prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl oxidation, was modified with long poly(ethylene glycol) (PEG) chains at different grafting densities. The PEG-grafted nanocelluloses were homogeneously embedded in CTA matrices. The mechanical and thermal properties of the nanocomposites were characterized. Increasing the grafting density caused the soft PEG chains to form denser and thicker layers around the rigid nanocelluloses. The PEG layers were not completely miscible with the CTA matrix. This structure considerably enhanced the energy dissipation by allowing sliding at the interface, which increased the toughness of the nanocomposites. The thermal and mechanical properties of the composites could be tailored by controlling the grafting density. These findings provide a deeper understanding about interfacial design for nanocellulose-based composite materials.

4.
Biomacromolecules ; 17(1): 192-9, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26618937

RESUMO

Freeze-dried microfibrillated cellulose (MFC) was directly dissolved in 8.0% w/w lithium chloride/N,N-dimethylacetamide (LiCl/DMAc), and MFC/LiCl/DMAc solutions with accurate MFC concentrations were prepared. The different MFC solutions were diluted to 1.0% and 0.5% w/v LiCl/DMAc, and subjected to size-exclusion chromatography with multiangle laser-light scattering and refractive index analyses (SEC/MALLS/RI), and off-line RI analysis to determine their refractive index increments (dn/dc). Chitin, cellulose triacetate, a poly(styrene) standard, and cellobiose were used for comparison. Each of the two determination methods gave different dn/dc values for MFC and chitin but similar dn/dc values for cellulose triacetate and poly(styrene). The anomalously small dn/dc values of MFC and chitin were explainable in terms of stable cellulose-LiCl and chitin-LiCl structures (i.e., formation of apparent covalent bonds between hydroxyl groups and LiCl) in the solutions. Thus, the SEC/MALLS/RI method provides reliable molecular mass parameters for cellulose and chitin.


Assuntos
Acetamidas/química , Celulose/análogos & derivados , Celulose/química , Quitina/química , Cloreto de Lítio/química , Peso Molecular , Celobiose/química , Celulose/análise , Quitina/análise , Cromatografia em Gel , Poliestirenos/química , Refratometria/métodos , Solubilidade , Solventes/química
5.
ACS Appl Mater Interfaces ; 7(20): 11041-6, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25946413

RESUMO

Improvement of the mechanical and thermal properties of cellulose triacetate (CTA) films is required without sacrificing their optical properties. Here, poly(ethylene glycol) (PEG)-grafted cellulose nanofibril/CTA nanocomposite films were fabricated by casting and drying methods. The cellulose nanofibrils were prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and amine-terminated PEG chains were grafted onto the surfaces of the TEMPO-oxidized cellulose nanofibrils (TOCNs) by ionic bonds. Because of the nanosize effect of TOCNs with a uniform width of ∼3 nm, the PEG-TOCN/CTA nanocomposite films had high transparency and low birefringence. The grafted PEG chains enhanced the filler-matrix interactions and crystallization of matrix CTA molecules, resulting in the Young's modulus and toughness of CTA film being significantly improved by PEG-grafted TOCN addition. The coefficient of thermal expansion of the original CTA film was mostly preserved even with the addition of PEG-grafted TOCNs. These results suggest that PEG-TOCNs are applicable to the reinforcement for transparent optical films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...