Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(46): 9820-9830, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37938019

RESUMO

An anisotropic interlayer force field that describes the interlayer interactions in homogeneous and heterogeneous interfaces of group-VI transition metal dichalcogenides (MX2, where M = Mo, W, and X = S, Se) is presented. The force field is benchmarked against density functional theory calculations for bilayer systems within the Heyd-Scuseria-Ernzerhof hybrid density functional approximation, augmented by a nonlocal many-body dispersion treatment of long-range correlation. The parametrization yields good agreement with the reference calculations of binding energy curves and sliding potential energy surfaces. It is found to be transferable to transition metal dichalcogenide (TMD) junctions outside of the training set that contain the same atom types. Calculated bulk moduli agree with most previous dispersion-corrected density functional theory predictions, which underestimate the available experimental values. Calculated phonon spectra of the various junctions under consideration demonstrate the importance of appropriately treating the anisotropic nature of the layered interfaces. Considering our previous parametrization for MoS2, the anisotropic interlayer potential enables accurate and efficient large-scale simulations of the dynamical, tribological, and thermal transport properties of a large set of homogeneous and heterogeneous TMD interfaces.

2.
J Chem Theory Comput ; 17(11): 7237-7245, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34719931

RESUMO

An anisotropic interlayer force field that describes the interlayer interactions in molybdenum disulfide (MoS2) is presented. The force field is benchmarked against density functional theory calculations for both bilayer and bulk systems within the Heyd-Scuseria-Ernzerhof hybrid density functional approximation, augmented by a nonlocal many-body dispersion treatment of long-range correlation. The parametrization yields good agreement with the reference calculations of binding energy curves and sliding potential energy surfaces for both bilayer and bulk configurations. Benchmark calculations for the phonon spectra of bulk MoS2 provide good agreement with experimental data, and the calculated bulk modulus falls in the lower part of experimentally measured values. This indicates the accuracy of the interlayer force field near equilibrium. Under external pressures up to 20 GPa, the developed force field provides a good description of compression curves. At higher pressures, deviations from experimental data grow, signifying the validity range of the developed force field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...