Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 21(19): 3730-3741, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34369550

RESUMO

DNA assembly and transformation are crucial to the building process in synthetic biology. These steps are significant roadblocks when engineering increasingly complex biological systems. To address this, recent development of widespread 'biofoundry' facilities has employed automation equipment to expedite the synthetic biology workflow. Despite significant progress, there is a clear demand for lower-cost and smaller-footprint automation equipment. The field of microfluidics have emerged to provide automation capabilities to meet this demand. However, we still lack devices capable of building large multi-gene systems in a consolidated process. In response to this challenge, we have developed a digital microfluidic platform that performs "one-pot" Golden Gate DNA assembly of large plasmids and transformation of E coli. The system features a novel electrode geometry and modular design, which make these devices simple to fabricate and use, thus improving the accessibility of microfluidics. This device incorporates an impedance-based adaptive closed loop water replenishment system to compensate for droplet evaporation and maintain constant assembly reaction concentrations, which we found to be crucial to the DNA assembly efficiency. We also showcase a closed-loop temperature control system that generates precise thermodynamic profiles to optimize heat shock transformation. Moreover, we validated the system by assembling and transforming large and complex plasmids conferring a biosynthetic pathway, resulting in performance comparable to those of standard techniques. We propose that the methods described here will contribute to a new generation of accessible automation platforms aimed at speeding up the 'building' process, lowering reagent consumption and removing manual work from synthetic biology.


Assuntos
Escherichia coli , Dispositivos Lab-On-A-Chip , DNA/genética , Escherichia coli/genética , Plasmídeos/genética , Biologia Sintética
2.
Anal Chem ; 93(6): 3181-3188, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33543619

RESUMO

Optimization of engineered biological systems requires precise control over the rates and timing of gene expression. Optogenetics is used to dynamically control gene expression as an alternative to conventional chemical-based methods since it provides a more convenient interface between digital control software and microbial culture. Here, we describe the construction of a real-time optogenetics platform, which performs closed-loop control over the CcaR-CcaS two-plasmid system in Escherichia coli. We showed the first model-based design approach by constructing a nonlinear representation of the CcaR-CcaS system, tuned the model through open-loop experimentation to capture the experimental behavior, and applied the model in silico to inform the necessary changes to build a closed-loop optogenetic control system. Our system periodically induces and represses the CcaR-CcaS system while recording optical density and fluorescence using image processing techniques. We highlight the facile nature of constructing our system and how our model-based design approach will potentially be used to model other systems requiring closed-loop optogenetic control.


Assuntos
Sistemas Computacionais , Optogenética , Escherichia coli/genética , Expressão Gênica , Software
3.
Small ; 16(34): e2002400, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32705796

RESUMO

Generating a stable knockout cell line is a complex process that can take several months to complete. In this work, a microfluidic method that is capable of isolating single cells in droplets, selecting successful edited clones, and expansion of these isoclones is introduced. Using a hybrid microfluidics method, droplets in channels can be individually addressed using a co-planar electrode system. In the hybrid microfluidics device, it is shown that single cells can be trapped and subsequently encapsulate them on demand into pL-sized droplets. Furthermore, droplets containing single cells are either released, kept in the traps, or merged with other droplets by the application of an electric potential to the electrodes that is actuated through an in-house user interface. This high precision control is used to successfully sort and recover single isoclones to establish monoclonal cell lines, which is demonstrated with a heterozygous NCI-H1299 lung squamous cell population resulting from loss-of-function eGFP and RAF1 gene knockout transfections.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Animais , Movimento Celular , Separação Celular , Dispositivos Lab-On-A-Chip
4.
Biomicrofluidics ; 13(3): 034106, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31123538

RESUMO

Sialyl-LewisX and LewisX are cell-surface glycans that influence cell-cell adhesion behaviors. These glycans are assembled by α(1,3)-fucosyltransferase enzymes. Their increased expression plays a role in inflammatory disease, viral and microbial infections, and cancer. Efficient screens for specific glycan modifications such as those catalyzed by fucosyltransferases are tended toward costly materials and large instrumentation. We demonstrate for the first time a fucosylation inhibition assay on a digital microfluidic system with the integration of image-based techniques. Specifically, we report a novel lab-on-a-chip approach to perform a fluorescence-based inhibition assay for the fucosylation of a labeled synthetic disaccharide, 4-methylumbelliferyl ß-N-acetyllactosaminide. As a proof-of-concept, guanosine 5'-diphosphate has been used to inhibit Helicobacter pylori α(1,3)-fucosyltransferase. An electrode shape (termed "skewed wave") is designed to minimize electrode density and improve droplet movement compared to conventional square-based electrodes. The device is used to generate a 10 000-fold serial dilution of the inhibitor and to perform fucosylation reactions in aqueous droplets surrounded by an oil shell. Using an image-based method of calculating dilutions, referred to as "pixel count," inhibition curves along with IC50 values are obtained on-device. We propose the combination of integrating image analysis and digital microfluidics is suitable for automating a wide range of enzymatic assays.

5.
Anal Chem ; 91(8): 5159-5168, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30945840

RESUMO

Digital microfluidics (DMF) represents an alternative to the conventional microfluidic paradigm of transporting fluids in enclosed channels. One of the major benefits of DMF is that fluid motion and control is achieved without external pumps. The automation component of DMF have pushed the barriers of this "lab-on-chip" technology. However, integration with external components (i.e., "world-to-chip") interfaces have been a challenge. Two common "world-to-chip" challenges are (1) delivering biological samples to DMF devices and (2) accurately controlling temperatures on device. To address these challenges, this work describes two "world-to-chip" interface features that have been integrated on a DMF platform: a reagent delivery system and a thermal control apparatus. This platform enables a variety of biological or chemical experiments to be conducted on-chip while reducing manual intervention. Specifically, our platform increases reagent volumes available to device reservoirs volume by at least 50-fold eliminating the need to manually refill reservoirs while improving droplet dispensing reproducibility. In addition, we have integrated a closed-loop temperature control system that offers precise temperature control on-chip. To validate our "world-to-chip" interface, we have automated bacterial transformation and enzymatic assay protocols, showing that such a system enhances DMF performance. Overall, we propose that this system will improve biological experimentation which requires fluidic and temperature control integrated on DMF platforms.


Assuntos
Celulase/análise , Ensaios Enzimáticos , Escherichia coli/genética , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Celulase/metabolismo , Estrutura Molecular , Tamanho da Partícula , Impressão Tridimensional , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...