Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764353

RESUMO

Ion-molecule reactions are an essential contributor to the chemistry of a diverse range of environments. While a great deal of work has been done to understand the fundamental mechanisms driving these reactions, there is still much more to discover. Here, we expand upon prior studies on ion-molecule reactions involving two isomers of C3H4, allene (H2C3H2) and propyne (H3C3H). Specifically, we probe the previously observed isomeric dependent reactivity of these molecules by reacting them with two ions with nearly identical ionization potentials, Xe+ and O2+. Our goal is to determine if the isomer-dependent reaction mechanisms previously observed are universal for C3H4 or if they depend on the ion character as well. Through the combination of experimental measurements and theoretical calculations, we found that both isomeric structure and identity of the ion contribute to the propensity of a reaction complex forming or for only long-range charge transfer to occur.

3.
Chem Sci ; 12(29): 10005-10013, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34377395

RESUMO

In the absence of experimental data, models of complex chemical environments rely on predicted reaction properties. Astrochemistry models, for example, typically adopt variants of capture theory to estimate the reactivity of ionic species present in interstellar environments. In this work, we examine astrochemically-relevant charge transfer reactions between two isotopologues of ammonia, NH3 and ND3, and two rare gas ions, Kr+ and Ar+. An inverse kinetic isotope effect is observed; ND3 reacts faster than NH3. Combining these results with findings from an earlier study on Xe+ (Petralia et al., Nat. Commun., 2020, 11, 1), we note that the magnitude of the kinetic isotope effect shows a dependence on the identity of the rare gas ion. Capture theory models consistently overestimate the reaction rate coefficients and cannot account for the observed inverse kinetic isotope effects. In all three cases, the reactant and product potential energy surfaces, constructed from high-level ab initio calculations, do not exhibit any energetically-accessible crossing points. Aided by a one-dimensional quantum-mechanical model, we propose a possible explanation for the presence of inverse kinetic isotope effects in these charge transfer reaction systems.

4.
Nat Commun ; 11(1): 173, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924778

RESUMO

Isotopic substitution has long been used to understand the detailed mechanisms of chemical reactions; normally the substitution of hydrogen by deuterium leads to a slower reaction. Here, we report our findings on the charge transfer collisions of cold [Formula: see text] ions and two isotopologues of ammonia, [Formula: see text] and [Formula: see text]. Deuterated ammonia is found to react more than three times faster than hydrogenated ammonia. Classical capture models are unable to account for this pronounced inverse kinetic isotope effect. Moreover, detailed ab initio calculations cannot identify any (energetically accessible) crossing points between the reactant and product potential energy surfaces, indicating that electron transfer is likely to be slow. The higher reactivity of [Formula: see text] is attributed to the greater density of states (and therefore lifetime) of the deuterated reaction complex compared to the hydrogenated system. Our observations could provide valuable insight into possible mechanisms contributing to deuterium fractionation in the interstellar medium.

5.
J Chem Phys ; 144(23): 234703, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27334186

RESUMO

Thin metallic films have a 1D quantum well along the surface normal direction, which yields particle-in-a-box style electronic quantum states. However the quantum well is not infinitely deep and the wavefunctions of these states penetrate outside the surface where the electron is bound by its own image-charge attraction. Therefore a series of discrete, vacant states reach out from the thin film into the vacuum increasing the probability of electron transfer from an external atom or molecule to the thin film, especially for the resonant case where the quantum well energy matches that of the atom. We show that "handshake" electron transfer from a highly excited Rydberg atom to these thin-film states is experimentally measurable. Thicker films have a wider 1D box, changing the energetic distribution and image-state contribution to the thin film wavefunctions, resulting in more resonances. Calculations successfully predict the number of resonances and the nature of the thin-film wavefunctions for a given film thickness.

6.
Phys Rev Lett ; 115(9): 093201, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371649

RESUMO

The charge transfer (ionization) of hydrogen Rydberg atoms (n=25-34) incident on a Cu(100) surface is investigated. Unlike fully metallic surfaces, where the Rydberg electron energy is degenerate with the conduction band of the metal, the Cu(100) surface has a projected band gap at these energies, and only discrete image states are available through which charge transfer can take place. Resonant enhancement of charge transfer is observed for Rydberg states whose energy matches one of the image states, and the integrated surface ionization signals (signal versus applied field) show clear periodicity as a function of n as the energies come in and out of resonance with the image states. The surface ionization dynamics show a velocity dependence; decreased velocity of the incident H atom leads to a greater mean distance of ionization and a lower field required to extract the ion. The surface ionization profiles for "on resonance" n values show a changing shape as the velocity is changed, reflecting the finite field range over which resonance occurs.

7.
J Phys Chem A ; 119(50): 12449-56, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26406306

RESUMO

Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.

8.
Phys Rev Lett ; 112(2): 023002, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484005

RESUMO

Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

9.
J Chem Phys ; 138(11): 114308, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23534640

RESUMO

The present study focuses on the interaction of H2 Rydberg molecules with doped silicon semiconductor surfaces. Para-H2 Rydberg states with principal quantum numbers n = 17-21 and core rotational quantum number N(+) = 2 are populated via resonant two-colour two-photon (vacuum ultraviolet-ultraviolet) excitation and collide at grazing incidence with a surface. For small Rydberg-surface separation, the Rydberg states are ionized due to the attractive surface potential experienced by the Rydberg electron and the remaining ion-core is detectable by applying a sufficiently strong external electric field. It is found that the surface ionization profiles (ion signal vs applied field) of H2 on p-type doped Si surfaces show a higher detected ion signal than for n-type Si surfaces, while an Au surface shows lower detected ion signal than either type of Si surface. It is shown that ion detectability decreases with increasing dopant density for both types of Si surfaces. Higher-n Rydberg states show higher ion detectability than lower-n Rydberg states but this variation becomes smaller when increasing the dopant density for both p- and n-type surfaces. Theoretical trajectory simulations were developed with a 2D surface potential model and using the over-the-barrier model for the ionization distance; the results help to explain the observed variations of the experimental surface ionization profiles with dopant density and type.

10.
Phys Rev Lett ; 107(9): 093201, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21929239

RESUMO

The charge transfer of Rydberg hydrogen atoms at a metal surface is investigated for the first time. The surface ionization of Stark states with various electron density distributions with respect to the surface is examined. Unlike the nonhydrogenic species studied previously, genuine control over the orientation of the electronic wave function in the surface-ionization process is demonstrated. A comparison of the results for a range of collisional velocities for the most redshifted Stark state with principal quantum numbers n=20-36 with the classical over-the-barrier approach shows a good agreement for the onset of the ion signal, but the shallow rise in signal is not accounted for. An excellent fit of the experimental results can be achieved using a simple semiempirical model.

11.
Phys Chem Chem Phys ; 13(18): 8441-7, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21359358

RESUMO

The production of a translationally cold (T < 1 K) sample of bromine atoms with estimated densities of up to 10(8) cm(-3) using photodissociation is presented. A molecular beam of Br(2) seeded in Kr is photodissociated into Br + Br* fragments, and the velocity distribution of the atomic fragments is determined using (2 + 1) REMPI and velocity map ion imaging. By recording images with varying delay times between the dissociation and probe lasers, we investigate the length of time after dissociation for which atoms remain in the laser focus, and determine the velocity spread of those atoms. By careful selection of the photolysis energy, it is found that a fraction of the atoms can be detected for delay times in excess of 100 µs. These are atoms for which the fragment recoil velocity vector is directly opposed and equal in magnitude to the parent beam velocity leading to a resultant lab frame velocity of approximately zero. The FWHM velocity spreads of detected atoms along the beam axis after 100 µs are less than 5 ms(-1), corresponding to temperatures in the milliKelvin range, opening the possibility that this technique could be utilized as a slow Br atom source.

12.
J Phys Chem A ; 114(42): 11175-88, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20593817

RESUMO

The ionization of H(2) Rydberg states at a metal surface is investigated using a molecular beam incident at grazing incidence on a gold surface. The H(2) molecules, excited by stepwise two-color laser excitation, are selected in each of the accessible Stark eigenstates of the N(+) = 2, n = 17 Rydberg manifold in turn and the ionization at the surface is characterized by applying a field to extract the ions formed. Profiles of extracted ion signal versus applied field show resonances that can be simulated by assuming an enhancement of surface ionization at fields corresponding to energy-level crossings between the populated N(+) = 2 manifold and the near-degenerate N(+) = 0 Stark manifolds. It is concluded that the slow (microsecond time scale) rotation-electronic energy transfer to N(+) = 0 states occurring at these crossings takes place in the time interval following application of the field ramp when the molecule is still distant from, and unperturbed by, the surface. However, the energy levels are strongly perturbed by image-dipole interactions as the molecule approaches close to the surface, leading to additional energy-level crossings. Adiabatic behavior at such crossings affects the intensity of the observed resonances in the surface ionization signal but not their field positions. Resonances are also observed in the surface ionization profiles at fields above the field-ionization threshold; some of these show asymmetric "Fano-type" line shapes due to quantum interference in the nonradiative coupling to degenerate bound and continuum states.


Assuntos
Ouro/química , Hidrogênio/química , Teoria Quântica , Propriedades de Superfície
13.
Phys Chem Chem Phys ; 9(42): 5656-63, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17960253

RESUMO

Velocity-map ion imaging (VMI) has been used to study the angular distribution of the NO fragment generated in the photodissociation of NO(2) at a variety of photolysis wavelengths. Images were recorded for the channels NO (2)Pi(1/2) (v = 0, J= 3/2, 11/2 and 21/2) + O ((3)P(2,1)), for excitation energies ranging from the onset (E(avl)/hc = 0 cm(-1)) to E(avl)/hc approximately 900 cm(-1). The angular anisotropy parameter beta was obtained as a function of available energy. Photofragment multiphoton ionization (PHOMPI) spectra were also recorded in the energy range E(avl)/hc = 0-300 cm(-1) for each of these channels. Large fluctuations of beta as a function of E(avl) were found in all observed dissociation channels. These variations are discussed in terms of the lifetimes of the originally photoexcited overlapping resonances in the A(2)B(2) state of NO(2), the dynamics of which are strongly influenced by nonadiabatic coupling with the X[combining tilde](2)A(1) state. The potential use of this photolysis process for production of cold oxygen atoms is discussed.

14.
J Chem Phys ; 126(18): 184702, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17508819

RESUMO

The ionization of a beam of H2 Rydberg molecules in collision with a metal surface (evaporated Au or Al) is studied. The Rydberg states are excited in an ultraviolet-vacuum ultraviolet double-resonant process and are state selected with a core rotational quantum number N+=0 or 2 and principal quantum numbers n=17-22 (N+=2) or n=41-45 (N+=0). It is found that the N+=0 states behave in a very similar manner to previous studies with atomic xenon Rydberg states, the distance of ionization from the surface scaling with n2. The N+=2 states, however, undergo a process of surface-induced rotational autoionization in which the core rotational energy transfers to the Rydberg electron. In this case the ionization distance scales approximately with nu0(2), the effective principal quantum number with respect to the adiabatic threshold. This process illustrates the close similarity between field ionization in the gas phase and the surface ionization process which is induced by the field due to image charges in the metal surface. The surface ionization rate is enhanced at certain specific values of the field, which is applied in the time interval between excitation and surface interaction. It is proposed here that these fields correspond to level crossings between the N+=0 and N+=2 Stark manifolds. The population of individual states of the N+=2, n=18 Stark manifold in the presence of a field shows that the surface-induced rotational autoionization is more facile for the blueshifted states, whose wave function is oriented away from the surface, than for the redshifted states. The observed processes appear to show little dependence on the chemical nature of the metallic surface, but a significant change occurs when the surface roughness becomes comparable to the Rydberg orbit dimensions.

15.
Phys Rev Lett ; 95(13): 133202, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16197138

RESUMO

The interaction of a beam of Rydberg molecules with a metal surface is investigated for the first time. Hydrogen molecules in a supersonic expansion are excited to Rydberg states with principal quantum number n, in the range 17-22 and are directed at a small angle onto a flat surface of either aluminum or gold. Detection of ions produced when Rydberg electrons tunnel into the metal surface provides information on the interaction between the Rydberg molecules and the surface potential. The experimental results suggest that, when close to the metal surface, the Rydberg molecules undergo a process of surface-induced rotational autoionization. It is found that the surface-ionization cross section shows strong resonances as a function of the applied electric field, which are independent of the metal studied.

16.
J Chem Phys ; 122(12): 124303, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15836374

RESUMO

Velocity-map imaging studies are reported for the photodissociation of acetaldehyde over a range of photolysis wavelengths (317.5-282.5 nm). Images are obtained for both the HCO and CH3 fragments. The mean rotational energy of both fragments increases with photodissociation energy, with a lesser degree of excitation in the CH3 fragment. The CH3 images demonstrate that the CH3 fragments are rotationally aligned with respect to the recoil direction and this is interpreted, and well modeled, on the basis of a propensity for forming CH3 fragments with M approximately K, where M is the projection of the rotational angular momentum along the recoil direction. The origin of the CH3 rotation is conserved motion from the torsional and methyl-rocking modes of the parent molecule. Nonstatistical vibrational distributions for the CH3 fragment are obtained at higher energies.

17.
J Chem Phys ; 121(9): 4089-96, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15332954

RESUMO

The slice-imaging variant of photofragment ion imaging is combined with Rydberg tagging. The photodissociation of NO(2) at 355 nm is used as the test system and the NO fragments are Rydberg tagged by two-photon two-color excitation via the intermediate A (2)Sigma(+) state. Images obtained by this method are compared with ion images obtained in the same apparatus using the approach of Kitsopoulos and co-workers [Rev. Sci. Instrum. 72, 3848 (2001)]. Comparable resolution and angular distributions are obtained in the two cases. It is proposed that the method demonstrated here could provide a complementary approach to existing ion-imaging methods, especially where resonantly enhanced multiphoton ionization detection of fragments is problematic.

18.
J Chem Phys ; 121(3): 1419-31, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15260687

RESUMO

Hydrogen molecules are excited in a molecular beam to Rydberg states around n=17-18 and are exposed to the inhomogeneous electric field of an electric dipole. The large dipole moment produced in the selected Stark eigenstates leads to strong forces on the H2 molecules in the inhomogeneous electric field. The trajectories of the molecules are monitored using ion-imaging and time of flight measurements. With the dipole rods mounted parallel to the beam direction, the high-field-seeking and low-field-seeking Stark states are deflected towards and away from the dipole, respectively. The magnitude of the deflection is measured as a function of the parabolic quantum number k and of the duration of the applied field. It is also shown that a large deflection is observed when populating the (17d2)1 state at zero field and switching the dipole field on after a delay. With the dipole mounted perpendicular to the beam direction, the molecules are either accelerated or decelerated as they move towards the dipole. The Rydberg states are found to survive for over 100 micros after the dipole field is switched off before being ionized at the detector and the time of flight is measured. A greater percentage change in kinetic energy is achieved by initial seeding of the beam in helium or neon followed by inhomogeneous field deceleration/acceleration. Molecular dynamics trajectory simulations are presented highlighting the extent to which the trajectories can be predicted based on the known Stark map. The spectroscopy of the populated states is discussed in detail and it is established that the N+=2, J=1, MJ=0 states populated here have a special stability with respect to decay by predissociation.

19.
Phys Rev Lett ; 92(3): 033005, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14753872

RESUMO

Argon atoms in Stark states at n approximately 25 have been decelerated and accelerated in inhomogeneous electric fields. The acceleration and deceleration behavior can be understood only by considering the adiabatic Landau-Zener dynamics that take place at the avoided crossings between the Stark states and the limited fluorescence lifetimes of approximately 10 micros.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...