Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 69(7): 2516-25, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15049653

RESUMO

Theoretical and synthetic studies of the tricyclic 10pi-electron hydrocarbon cyclobuta[1,2:3,4]dicyclopentene (1), a nominally aromatic structure that has never been synthesized, are described. Geometry optimization by density-functional-theory calculations (B3LYP/6-31G(d,p)) predict that 1 is a D(2h) symmetric structure with nonalternant C-C single and double bonds. The calculations also predict that 1 is 4.7 kcal/mol higher in energy than the isomeric hydrocarbon 1,6-didehydro[10]annulene (2), a molecule known to isomerize to 1,5-didehydronaphthalene (4) above -50 degrees C. Calculated enthalpic changes of homodesmotic reactions support the notion that 1 is an aromatic molecule with a resonance stabilization energy (RSE) about half to two-thirds that of benzene on a per-molecule basis. Investigations of potential synthetic pathways to 1 initially utilized as starting material the tricyclic carbonate 11, the product of an intramolecular [2 + 2]-photocyclization reaction. In these studies, 11 was transformed in several steps to the distannane 12, which upon treatment with boron fluoride ethyl etherate is believed to have formed the unstable hydrocarbon bicyclopentadienylidene (13). In an effort to avoid cleavage of the central, four-membered ring of unsaturated tricyclo[5.3.0.0(2,6)]decane intermediates (perhaps the result of 10-electron electrocyclic ring opening of the tetraene 8), synthetic approaches to 1 employing cobalt-cyclobutadiene complexes 18 and 19 were pursued. Treatment of 18 with excess methyllithium led to the novel cobaltacyclic product 30, and dehydration of 19 in the presence of pyridine produced the ring-opening cobaltacyclic product 35. It is proposed that both processes may occur by a 10-electron electrocyclic ring-opening reaction of eta(2)-organocobalt intermediates. These processes may be related to the hypothetical transformation of tetraene 8 to bicyclopentadienylidene (13).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...