Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(8): 103902, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38908127

RESUMO

Wooden Breast (WB) abnormality represents one of the major challenges that the poultry industry has faced in the last 10 years. Despite the enormous progress in understanding the mechanisms underlying WB, the precise initial causes remain to be clarified. In this scenario, the present research is intended to characterize the gene expression profiles of broiler Pectoralis major muscles affected by WB, comparing them to the unaffected counterpart, to provide new insights into the biological mechanisms underlying this defect and potentially identifying novel genes likely involved in its occurrence. To this purpose, data obtained in a previous study through the RNA-sequencing technology have been used to identify differentially expressed genes (DEGs) between 6 affected and 5 unaffected broilers' breast muscles, by using the newest reference genome assembly for Gallus gallus (GRCg7b). Also, to deeply investigate molecular and biological pathways involved in the WB progression, pathways analyses have been performed. The results achieved through the differential gene expression analysis mainly evidenced the downregulation of glycogen metabolic processes, gluconeogenesis, and tricarboxylic acid cycle in WB muscles, thus corroborating the evidence of a dysregulated energy metabolism characterizing breasts affected by this abnormality. Also, genes related to hypertrophic muscle growth have been identified as differentially expressed (e.g., WFIKKN1). Together with that, a downregulation of genes involved in mitochondrial biogenesis and functionality has been detected. Among them, PPARGC1A and PPARGC1B chicken genes are particularly noteworthy. These genes not only have essential roles in regulating mitochondrial biogenesis but also play pivotal roles in maintaining glucose and energy homeostasis. In view of that, their downregulation in WB-affected muscle may be considered as potentially related to both the mitochondrial dysfunction and altered glucose metabolism in WB muscles, and their key involvement in the molecular alterations characterizing this muscular abnormality might be hypothesized.

2.
Poult Sci ; 103(8): 103856, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908124

RESUMO

This trial was conducted to evaluate the effects of replacing soybean meal with microalgae meal (MM; Arthrospira spp.) during grower and finisher phases on productive performance, footpad dermatitis (FPD) occurrence, breast meat quality, amino acid digestibility and plasma metabolomics profile of broiler chickens. One thousand day-old Ross 308 male chicks were divided into 5 experimental groups (8 replicates, 25 birds/each): CON, fed a commercial soybean-based diet throughout the trial (0-41 d); F3 and F6, fed the CON diet up to 28 d of age and then a finisher diet (29-41 d) with either 30 or 60 g MM/kg, respectively; and GF3 and GF6, receiving CON diet until 14 d and then diets containing 30 or 60 g MM/kg from 15 to 41 d, respectively. All diets were iso-energetic and with a similar amino acid profile. Growth performances were recorded on a pen basis at the end of each feeding phase and apparent ileal amino acid digestibility was determined at 41 d. Footpad dermatitis occurrence was assessed on all processed birds, while breast and plasma samples were collected for meat quality and metabolomics analysis (proton nuclear magnetic resonance - 1H-NMR). At 41 d, CON group showed higher body weight than F6 and GF6 ones (2,541 vs. 2,412 vs. 2,384 g, respectively; P < 0.05). Overall, GF6 group exhibited the highest feed conversion ratio, while F3 did not present significant differences compared to CON (1.785 vs. 1.810 vs. 1.934 g feed/g gain, respectively for CON, F3 and GF6; P < 0.01). The occurrence and the risk of developing FPD were similar among groups. MM administration increased breast meat yellowness and reduced amino acid digestibility (P < 0.001). The 1H-NMR analysis revealed variations in the levels of some circulating metabolites, including histidine, arginine and creatine, which play important metabolic roles. Overall, these findings can contribute to expand the knowledge about the use of Arthrospira spp. as protein source in broiler diets.

3.
Front Physiol ; 15: 1392506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516210
5.
Foods ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254609

RESUMO

This study aimed to investigate consumer sensory profiles and liking of Parmigiano Reggiano PDO cheese produced with milk from cows reared indoors and fed with different forage sources, i.e., dry hay and fresh forage. Two cheese samples were tested by 119 Italian subjects, following a protocol that included a Check-All-That-Apply method to assess the sensory profile, a Just-About-Right scale to evaluate the adequacy of attributes, and questions on liking (9-point hedonic scale). A questionnaire related to personal information and consumption habits was also submitted. The color of the two samples, based on image analysis, was different: the sample produced with milk from the dairy cows fed fresh forage had a higher intensity of yellow than the other; they were also described differently (p ≤ 0.05) by participants in the consumer test. Indeed, Parmigiano Reggiano produced with milk from the cows that were fed dry hay was mainly characterized by a "fresh milk" and "solubility", while the sample produced with milk from cows fed fresh forage was described as "yellow", "seasoned", "pungent", and with a "cheese crust" flavor. Even if no significant differences were observed between the two samples in terms of liking (p ≤ 0.05), the attribute "graininess" showed a great impact on liking ratings together with "yellow" (p ≤ 0.05), apparently corresponding to a specific expectation regarding the intensity of these attributes. Data were also analyzed according to the gender of consumers, highlighting that for women, the adequacy of "fresh milk", "sweet", and "graininess" greatly impacted liking for the cheese from cows fed dry hay.

6.
Poult Sci ; 103(1): 103179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931400

RESUMO

Collagen type IV (COL4) is one of the major components of animals' and humans' basement membranes of several tissues, such as skeletal muscles and vascular endothelia. Alterations in COL4 assembly and secretion are associated to muscular disorders in humans and animals among which growth-related abnormalities such as white striping and wooden breast affecting Pectoralis major muscles (PMs) in modern fast-growing (FG) chickens. Considering the high prevalence of these myopathies in FG broilers and that a worsening is observed as the bird slaughter age is increased, the present study was intended to evaluate the distribution and the expression level of COL4 protein and its coding genes in PMs of FG broilers at different stages of muscle development (i.e., 7, 14, 21, 28, 35, and 42 d of age). Medium-growing (MG) chickens have been considered as the control group in consideration of the lower selection pressure on breast muscle growth rate and hypertrophy. Briefly, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. The normalized expression levels of COL4 coding genes showed an overexpression of COL4A2 in FG than MG at d 28, as well as a significant decrease in its expression over their rearing period. Overall, results obtained through the gene expression analysis suggested that selection for the hypertrophic growth of FG broilers may have led to an altered regulation of fibroblast proliferation and COL4 synthesis. Moreover, western blot and IHC analyses suggested an altered secretion and/or degradation of COL4 protein in FG broilers, as evidenced by the fluctuating trend of 2 bands observed in FG over time. In view of the above, the present research supports the evidence about a potential aberrant synthesis and/or degradation of COL4 and corroborates the hypothesis regarding a likely involvement of COL4 in the series of events underlying the growth-related abnormalities in modern FG broilers.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Humanos , Animais , Músculos Peitorais/metabolismo , Galinhas/fisiologia , Colágeno Tipo IV/metabolismo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/veterinária , Doenças Musculares/metabolismo , Carne/análise
7.
Front Physiol ; 14: 1296342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156069

RESUMO

The most dynamic period throughout the lifespan of broiler chickens is the pre-post-hatching period, entailing profound effects on their energy status, survival rate, body weight, and muscle growth. Given the significance of this pivotal period, we evaluated the effect of in-ovo feeding (IOF) with creatine monohydrate on late-term embryos' and hatchlings' energy reserves and post-hatch breast muscle development. The results demonstrate that IOF with creatine elevates the levels of high-energy-value molecules (creatine and glycogen) in the liver, breast muscle and yolk sac tissues 48 h post IOF, on embryonic day 19 (p < 0.03). Despite this evidence, using a novel automated image analysis tool on day 14 post-hatch, we found a significantly higher number of myofibers with lower diameter and area in the IOF creatine group compared to the control and IOF NaCl groups (p < 0.004). Gene expression analysis, at hatch, revealed that IOF creatine group had significantly higher expression levels of myogenin (MYOG) and insulin-like growth factor 1 (IGF1), related to differentiation of myogenic cells (p < 0.01), and lower expression of myogenic differentiation protein 1 (MyoD), related to their proliferation (p < 0.04). These results imply a possible effect of IOF with creatine on breast muscle development through differential expression of genes involved in myogenic proliferation and differentiation. The findings provide valuable insights into the potential of pre-hatch enrichment with creatine in modulating post-hatch muscle growth and development.

8.
Front Physiol ; 14: 1242094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37772060

RESUMO

This research aimed to investigate, through a multifactorial approach, the relationship among some in-vivo parameters (i.e., behavior and blood traits) in broilers exposed to chronic HS, and their implications on proximate composition, technological properties, and oxidative stability of breast meat. A total of 300 Ross 308 male chickens were exposed, from 35 to 41 days of age, to either thermoneutral conditions (TNT group: 20°C; six replicates of 25 birds/each) or elevated ambient temperature (HS group: 24 h/d at 30°C; six replicates of 25 birds/each). In order to deal with thermal stress, HS chickens firstly varied the frequency of some behaviors that are normally expressed also in physiological conditions (i.e., increasing "drinking" and decreasing "feeding") and then exhibited a behavioral pattern finalized at dissipating heat, primarily represented by "roosting," "panting" and "elevating wings." Such modifications become evident when the temperature reached 25°C, while the behavioral frequencies tended to stabilize at 27°C with no further substantial changes over the 6 days of thermal challenge. The multifactorial approach highlighted that these behavioral changes were associated with oxidative and inflammatory status as indicated by lower blood γ-tocopherol and higher carbonyls level (0.38 vs. 0.18 nmol/mL, and 2.39 vs. 7.19 nmol/mg proteins, respectively for TNT and HS; p < 0.001). HS affected breast meat quality by reducing the moisture:protein ratio (3.17 vs. 3.01, respectively for TNT and HS; p < 0.05) as well as the muscular acidification (ultimate pH = 5.81 vs. 6.00, respectively; p < 0.01), resulting in meat with higher holding capacity and tenderness. HS conditions reduced thiobarbituric acid reactive substances (TBARS) concentration in the breast meat while increased protein oxidation. Overall results evidenced a dynamic response of broiler chickens to HS exposure that induced behavioral and physiological modifications strictly linked to alterations of blood parameters and meat quality characteristics.

9.
Front Physiol ; 13: 1086815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479343
10.
PLoS One ; 17(10): e0275160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36190974

RESUMO

The aim of this study was to investigate the expression of genes related to muscle growth, hypoxia and oxidative stress responses, a multi-substrate serine/threonine-protein kinase (AMPK) and AMPK-related kinases, carbohydrate metabolism, satellite cells activities and fibro- adipogenic progenitors (FAPs) in fast-growing (FG) (n = 30) and medium-growing (MG) chickens (n = 30). Pectoralis major muscles were collected at 7d, 14d, 21d, 28d, 35d and 42d of age. According to their macroscopic features, the samples from FG up to 21d of age were classified as unaffected, while all samples collected at an older age exhibited macroscopic features ascribable to white striping and/or wooden breast abnormalities. In contrast, MG samples did not show any feature associated to muscle disorders. The absolute transcript abundance of 33 target genes was examined by droplet digital polymerase chain reaction. The results showed differential gene expression profiles between FG and MG chickens at different ages. While most genes remained unchanged in MG chickens, the expression patterns of several genes in FG were significantly affected by age. Genes encoding alpha 1, alpha 2, beta 2 and gamma 3 isoforms of AMPK, as well as AMPK-related kinases, were identified as differentially expressed between the two strains. The results support the hypothesis of oxidative stress-induced muscle damage with metabolic alterations in FG chickens. An increased expression of ANXA2, DES, LITAF, MMP14, MYF5 and TGFB1 was observed in FG strain. The results suggest the occurrence of dysregulation of FAP proliferation and differentiation occurring during muscle repair. FAPs could play an important role in defining the proliferation of connective tissue (fibrosis) and deposition of intermuscular adipose tissue which represents distinctive traits of muscle abnormalities. Overall, these findings demonstrate that dysregulated molecular processes associated with myopathic lesions in chickens are strongly influenced by growth rate, and, to some extent, by age.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Galinhas/genética , Galinhas/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Doenças Musculares/patologia , Músculos Peitorais/metabolismo , Doenças das Aves Domésticas/patologia , Serina/metabolismo , Treonina/metabolismo
11.
Food Res Int ; 160: 111685, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076392

RESUMO

The aim of this work was to investigate the possibility to industrially produce fermented sausages without the addition of nitrate and nitrite. Indeed, despite their antimicrobial effect and multiple technological roles, an increasing pressure for their removal has recently raised. To achieve this goal while maintaining an acceptable final product quality, we deeply modified the whole process, that was carried out at 10-15 °C (i.e., temperatures lower than traditional Mediterranean products) and by using bioprotective starter cultures at high concentrations (7 log CFU/g) to lead the fermentation. Different glucose amounts (0.2 or 0.4 % w/w) were also tested to optimize the process. The results showed no significant differences between the control (with nitrate/nitrite) and the sausages without preservatives in terms of aw (value range 0.908-0.914), weight loss (about 38% in all samples), lactic acid bacteria (value range 8.1-8.3 log CFU/g) and coagulase negative cocci (value range 6.8-7.1 log CFU/g). The amount of sugar affected the final characteristics of sausages. Indeed, in the absence of curing salts, lower sugar concentration resulted in better textural features (reduced hardness and gumminess) and lower oxidation (TBARS values 0.80 vs. 1.10 mg MDA/kg of meat product in samples with 0.2% or 0.4% of glucose, respectively). Finally, challenge tests evidenced the inability of selected strains of Listeria innocua, Salmonella enterica sub. enterica and Clostridium botulinum to grow, under the adopted conditions, in fermented sausages. This research highlighted that nitrate/nitrite removal from these meat products requires accurate technological changes to guarantee the final quality.


Assuntos
Produtos da Carne , Nitritos , Glucose , Produtos da Carne/análise , Nitratos , Açúcares
12.
Front Physiol ; 13: 970034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36134328

RESUMO

Vimentin (VIM) and desmin (DES) are muscle-specific proteins having crucial roles in maintaining the lateral organization and alignment of the sarcomeric structure during myofibrils' regeneration. The present experiment was designed to ascertain the evolution of VIM and DES in Pectoralis major muscles (PM) of fast-growing (FG) and medium-growing (MG) meat-type chickens both at the protein and gene levels. MG broilers were considered as a control group whereas the evolution of VIM and DES over the growth period was evaluated in FG by collecting samples at different developmental stages (7, 14, 21, 28, 35, and 42 days). After performing a preliminary classification of the samples based on their histological features, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. Overall, the findings obtained at the protein level mirrored those related to their encoding genes, although a potential time lag required to observe the consequences of gene expression was evident. The two- and 3-fold higher level of the VIM-based heterodimer observed in FG at d 21 and d 28 in comparison with MG of the same age might be ascribed to the beginning and progressive development of the regenerative processes. This hypothesis is supported by IHC highlighting the presence of fibers to co-expressing VIM and DES. In addition, gene expression analyses suggested that, unlike VIM common sequence, VIM long isoform may not be directly implicated in muscle regeneration. As for DES content, the fluctuating trends observed for both the native protein and its heterodimer in FG might be ascribed to its importance for maintaining the structural organization of the regenerating fibers. Furthermore, the higher expression level of the DES gene in FG in comparison with MG further supported its potential application as a marker of muscle fibers' regeneration. In conclusion, the findings of the present research seem to support the existence of a relationship between the occurrence of muscle regeneration and the growth rate of meat-type chickens and corroborate the potential use of VIM and DES as molecular markers of these cellular processes.

13.
Front Physiol ; 13: 936768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874513

RESUMO

Growth-related abnormalities affecting modern chickens, known as White Striping (WS) and Wooden Breast (WB), have been deeply investigated in the last decade. Nevertheless, their precise etiology remains unclear. The present study aimed at providing new insights into the molecular mechanisms involved in their onset by identifying clusters of co-expressed genes (i.e., modules) and key loci associated with phenotypes highly related to the occurrence of these muscular disorders. The data obtained by a Weighted Gene Co-expression Network Analysis (WGCNA) were investigated to identify hub genes associated with the parameters breast width (W) and total crude protein content (PC) of Pectoralis major muscles (PM) previously harvested from 12 fast-growing broilers (6 normal vs. 6 affected by WS/WB). W and PC can be considered markers of the high breast yield of modern broilers and the impaired composition of abnormal fillets, respectively. Among the identified modules, the turquoise (r = -0.90, p < 0.0001) and yellow2 (r = 0.91, p < 0.0001) were those most significantly related to PC and W, and therefore respectively named "protein content" and "width" modules. Functional analysis of the width module evidenced genes involved in the ubiquitin-mediated proteolysis and inflammatory response. GTPase activator activity, PI3K-Akt signaling pathway, collagen catabolic process, and blood vessel development have been detected among the most significant functional categories of the protein content module. The most interconnected hub genes detected for the width module encode for proteins implicated in the adaptive responses to oxidative stress (i.e., THRAP3 and PRPF40A), and a member of the inhibitor of apoptosis family (i.e., BIRC2) involved in contrasting apoptotic events related to the endoplasmic reticulum (ER)-stress. The protein content module showed hub genes coding for different types of collagens (such as COL6A3 and COL5A2), along with MMP2 and SPARC, which are implicated in Collagen type IV catabolism and biosynthesis. Taken together, the present findings suggested that an ER stress condition may underly the inflammatory responses and apoptotic events taking place within affected PM muscles. Moreover, these results support the hypothesis of a role of the Collagen type IV in the cascade of events leading to the occurrence of WS/WB and identify novel actors probably involved in their onset.

14.
Foods ; 11(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35885302

RESUMO

Typical salami produced from Mora Romagnola (MR), an autochthonous pig breed extensively farmed within a geographically confined Italian area, are food products of commercial interest. This investigation aimed to highlight elements for the recognition and authentication of such typical salami. Five MR salami were analyzed using a sensory and instrumental approach, and the results were compared with those from eight salami made from a conventional pig breed. The sensory profiles were defined through attributes such as seasoning, pepper, garlic, fermented etc.; no differences in the products ascribable to the pig breed were highlighted. By analyzing volatile compounds, 33 molecules were detected; significant differences were found among samples, probably related to processing methods. Color differences between MR and conventional salami were identified by an electronic eye. According to instrumental texture analysis, large variability among the MR samples was detected, probably related to different types of salami (recipe, casing, size, ripening). Correlations were found among the sensory results, volatile compounds, and textural properties of the samples. Most differences do not appear to be specifically related to MR breed; only red color intensity evaluated by an electronic eye showed a correlation with breed, i.e., MR salami. This study highlights the large variability among the salami analyzed.

15.
Front Physiol ; 12: 691194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262480

RESUMO

Transcriptomes associated with wooden breast (WB) were characterized in broilers at two different market ages. Breasts (Pectoralis major) were collected, 20-min postmortem, from male Ross 308 broilers slaughtered at 6 and 7 weeks of age. The breasts were classified as "non-WB" or "WB" based on palpation hardness scoring (non-WB = no abnormal hardness, WB = consistently hardened). Total RNA was isolated from 16 samples (n = 3 for 6 week non-WB, n = 3 for 6 week WB; n = 5 for 7 week non-WB, n = 5 for 7 week WB). Transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique, and compared between non-WB and WB samples of the same age. Among 6 week broilers, 910 transcripts were differentially expressed (DE) (false discovery rate, FDR < 0.05). Pathway analysis underlined metabolisms of glucose and lipids along with gap junctions, tight junction, and focal adhesion (FA) signaling as the top enriched pathways. For the 7 week broilers, 1,195 transcripts were identified (FDR < 0.05) with regulation of actin cytoskeleton, mitogen-activated protein kinase (MAPK) signaling, protein processing in endoplasmic reticulum and FA signaling highlighted as the enriched affected pathways. Absolute transcript levels of eight genes (actinin-1 - ACTN1, integrin-linked kinase - ILK, integrin subunit alpha 8 - ITGA8, integrin subunit beta 5 - ITGB5, protein tyrosine kinase 2 - PTK2, paxillin - PXN, talin 1 - TLN1, and vinculin - VCL) of FA signaling pathway were further elucidated using a droplet digital polymerase chain reaction. The results indicated that, in 6 week broilers, ITGA8 abundance in WB was greater than that of non-WB samples (p < 0.05). Concerning 7 week broilers, greater absolute levels of ACTN1, ILK, ITGA8, and TLN1, accompanied with a reduced ITGB5 were found in WB compared with non-WB (p < 0.05). Transcriptional modification of FA signaling underlined the potential of disrupted cell-cell communication that may incite aberrant molecular events in association with development of WB myopathy.

16.
Animals (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064247

RESUMO

The present study aimed at assessing the impact of lysine restriction performed during different feeding phases on growth performances, meat quality traits and technological properties as well as on the incidence and severity of breast muscle abnormalities. For this purpose, a total of 945 one-day-old Ross 308 male chicks was randomly divided into three experimental groups: CONT, fed a four feeding phases commercial diet, GRW I, and GRW I + II fed CONT diet with the depletion of synthetic lysine during grower I and grower I and II feeding phases, respectively. Productive performances were recorded throughout the whole rearing cycle and the incidence of breast muscle growth-related abnormalities assessed at slaughter (49 d) on 280 breasts/group. Quality traits and technological properties of breast meat were measured on a total of 54 Pectoralis major muscles. Lysine restriction only marginally affected the productive performances and the quality parameters of breast meat. The increased (p < 0.05) solubility of the protein fraction along with the remarkably higher (p < 0.05) anserine content found in GRW I + II suggests an increased energy requirement in the pectoral muscles belonging to lysine-restricted birds and supports the hypothesis of a reduced protein synthesis taking place within these muscles.

17.
Front Physiol ; 12: 684497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135775

RESUMO

Spaghetti meat (SM) is a recent muscular abnormality that affects the Pectoralis major muscle of fast-growing broilers. As the appellative suggests, this condition phenotypically manifests as a loss of integrity of the breast muscle, which appears soft, mushy, and sparsely tight, resembling spaghetti pasta. The incidence of SM can reach up to 20% and its occurrence exerts detrimental effects on meat composition, nutritional value, and technological properties, accounting for an overall decreased meat value and important economic losses related to the necessity to downgrade affected meats. However, due to its recentness, the causative mechanisms are still partially unknown and less investigated compared to other muscular abnormalities (i.e., White Striping and Wooden Breast), for which cellular stress and hypoxia caused by muscle hypertrophy are believed to be the main triggering factors. Within this scenario, the present review aims at providing a clear and concise summary of the available knowledge concerning SM abnormality and concurrently presenting the existing research gaps, as well as the potential future developments in the field.

18.
Poult Sci ; 100(2): 1299-1307, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518087

RESUMO

It is generally held that the content of several free amino acids and dipeptides is closely related to the energy-supplying metabolism of skeletal muscles. Metabolic characteristics of muscles are involved in the variability of meat quality due to their ability to influence the patterns of energy metabolism not only in living animal but also during postmortem time. Within this context, this study aimed at establishing whether the concentration of histidine dipeptides can affect muscle postmortem metabolism, examining the glycolytic pathway of 3 chicken muscles (pectoralis major, extensor iliotibialis lateralis, and gastrocnemius internus as glycolytic, intermediate, and oxidative-type, respectively) selected based on their histidine dipeptides content and ultimate pH. Thus, a total of 8 carcasses were obtained from the same flock of broiler chickens (Ross 308 strain, females, 49 d of age, 2.8 kg body weight at slaughter) and selected immediately after evisceration from the line of a commercial processing plant. Meat samples of about 1 cm3 were excised from bone-in muscles at 15, 60, 120, and 1,440 min postmortem, instantly frozen in liquid nitrogen and used for the determination of pH, glycolytic metabolites, buffering capacity as well as histidine dipeptides content through 1H-NMR. Overall results suggest that glycolysis in leg muscles ceased already after 2 h postmortem, whereas in breast muscle continued until 24 h, when it exhibited significantly lower pH values (P < 0.05). However, considering its remarkable glycolytic potential, pectoralis major muscle should have exhibited a greater and faster acidification, suggesting that its higher (P < 0.05) histidine dipeptides' content might have prevented a potentially stronger acidification process. Accordingly, breast muscle also showed greater (P < 0.05) buffering ability in the pH range 6.0-7.0. Therefore, anserine and carnosine, being highly positively correlated with muscle's buffering capacity (P < 0.001), might play a role in regulating postmortem pH decline, thus exerting an effect on muscle metabolism during prerigor phase and the quality of the forthcoming meat. Overall results also suggest that total histidine dipeptides content along with muscular ultimate pH represent good indicators for the energy-supplying metabolism of chicken muscles.


Assuntos
Dipeptídeos , Metabolismo Energético , Histidina , Músculo Esquelético/metabolismo , Animais , Galinhas , Dipeptídeos/metabolismo , Feminino , Glicólise , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Carne/análise , Músculos Peitorais/metabolismo , Mudanças Depois da Morte
19.
Sci Rep ; 11(1): 1776, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469097

RESUMO

In recent years, the poultry industry has experienced an increased incidence of myopathies affecting breasts of fast-growing broilers, such as White Striping (WS) and Wooden Breast (WB) defects. To explore the molecular mechanisms and genes involved in WS and WB onset, we decided to perform a Weighted Gene Co-expression Network Analysis (WGCNA) using the gene expression profile and meat quality parameters of Pectoralis major muscles analysed in our previous study. Among the 212 modules identified by WGCNA, the red, darkred, midnightblue and paleturquoise4 modules were chosen for subsequent analysis. Functional analysis evidenced pathways involved in extracellular matrix (ECM) organization, collagen metabolism, cellular signaling and unfolded protein response. The hub gene analysis showed several genes coding for ECM components as the most interconnected nodes in the gene network (e.g. COL4A1, COL4A2, LAMA2, LAMA4, FBLN5 and FBN1). In this regard, this study suggests that alterations in ECM composition could somehow activate the cascade of biological reactions that result in the growth-related myopathies onset, and the involvement of Collagen IV alterations in activating the endoplasmic reticulum (ER) stress response may be hypothesized. Therefore, our findings provide further and innovative knowledge concerning the molecular mechanisms related to the breast abnormalities occurrence in modern broilers.


Assuntos
Colágeno Tipo IV/metabolismo , Matriz Extracelular/fisiologia , Doenças Musculares/genética , Doenças Musculares/patologia , Músculos Peitorais/metabolismo , Animais , Galinhas , Colágeno Tipo IV/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Carne/análise , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/patologia , Resposta a Proteínas não Dobradas/genética
20.
Foods ; 10(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504106

RESUMO

Pulsed electric field (PEF) is a non-thermal technology which is increasingly drawing the interest of the meat industry. This study aimed at evaluating the effect of PEF on the main technological properties of chicken meat, by investigating the role of the most relevant process parameters such as the number of pulses (150 vs. 300 and 450 vs. 600) and the electric field strength (0.60 vs. 1.20 kV/cm). Results indicated that PEF does not exert any effect on meat pH and just slightly affects lightness and yellowness. Low-intensity PEF treatments improved the water holding capacity of chicken meat by significantly (p < 0.001) reducing drip loss up to 28.5% during 4 days of refrigerated storage, without damaging proteins' integrity and functionality. Moreover, from the analysis of the process parameters, it has been possible to highlight that increasing the number of pulses is more effective in reducing meat drip loss rather than doubling the electric field strengths. From an industrial point of view, the results of this explorative study suggested the potential of PEF to reduce the undesired liquid inside the package, thus improving consumer acceptance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...