Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 442, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200029

RESUMO

In quantum magnetic materials, ordered phases induced by an applied magnetic field can be described as the Bose-Einstein condensation (BEC) of magnon excitations. In the strongly frustrated system SrCu2(BO3)2, no clear magnon BEC could be observed, pointing to an alternative mechanism, but the high fields required to probe this physics have remained a barrier to detailed investigation. Here we exploit the first purpose-built high-field neutron scattering facility to measure the spin excitations of SrCu2(BO3)2 up to 25.9 T and use cylinder matrix-product-states (MPS) calculations to reproduce the experimental spectra with high accuracy. Multiple unconventional features point to a condensation of S = 2 bound states into a spin-nematic phase, including the gradients of the one-magnon branches and the persistence of a one-magnon spin gap. This gap reflects a direct analogy with superconductivity, suggesting that the spin-nematic phase in SrCu2(BO3)2 is best understood as a condensate of bosonic Cooper pairs.

2.
J Phys Condens Matter ; 36(15)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38171024

RESUMO

We establish the sign of the linear magnetoelectric (ME) coefficient,α, in chromia, Cr2O3. Cr2O3is the prototypical linear ME material, in which an electric (magnetic) field induces a linearly proportional magnetization (polarization), and a single magnetic domain can be selected by annealing in combined magnetic (H) and electric (E) fields. Opposite antiferromagnetic (AFM) domains have opposite ME responses, and which AFM domain corresponds to which sign of response has previously been unclear. We use density functional theory (DFT) to calculate the magnetic response of a single AFM domain of Cr2O3to an applied in-plane electric field at zero kelvin. We find that the domain with nearest neighbor magnetic moments oriented away from (towards) each other has a negative (positive) in-plane ME coefficient,α⊥, at zero kelvin. We show that this sign is consistent with all other DFT calculations in the literature that specified the domain orientation, independent of the choice of DFT code or functional, the method used to apply the field, and whether the direct (magnetic field) or inverse (electric field) ME response was calculated. Next, we reanalyze our previously published spherical neutron polarimetry data to determine the AFM domain produced by annealing in combinedEandHfields oriented along the crystallographic symmetry axis at room temperature. We find that the AFM domain with nearest-neighbor magnetic moments oriented away from (towards) each other is produced by annealing in (anti-)parallelEandHfields, corresponding to a positive (negative) axial ME coefficient,α∥, at room temperature. Sinceα⊥at zero kelvin andα∥at room temperature are known to be of opposite sign, our computational and experimental results are consistent.

3.
Nat Commun ; 14(1): 3408, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296135

RESUMO

Control of magnetization and electric polarization is attractive in relation to tailoring materials for data storage and devices such as sensors or antennae. In magnetoelectric materials, these degrees of freedom are closely coupled, allowing polarization to be controlled by a magnetic field, and magnetization by an electric field, but the magnitude of the effect remains a challenge in the case of single-phase magnetoelectrics for applications. We demonstrate that the magnetoelectric properties of the mixed-anisotropy antiferromagnet LiNi1-xFexPO4 are profoundly affected by partial substitution of Ni2+ ions with Fe2+ on the transition metal site. This introduces random site-dependent single-ion anisotropy energies and causes a lowering of the magnetic symmetry of the system. In turn, magnetoelectric couplings that are symmetry-forbidden in the parent compounds, LiNiPO4 and LiFePO4, are unlocked and the dominant coupling is enhanced by almost two orders of magnitude. Our results demonstrate the potential of mixed-anisotropy magnets for tuning magnetoelectric properties.


Assuntos
Eletricidade , Campos Magnéticos , Anisotropia , Imãs
4.
Nat Commun ; 14(1): 3387, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296136

RESUMO

Magnetic topological insulators and semimetals are a class of crystalline solids whose properties are strongly influenced by the coupling between non-trivial electronic topology and magnetic spin configurations. Such materials can host exotic electromagnetic responses. Among these are topological insulators with certain types of antiferromagnetic order which are predicted to realize axion electrodynamics. Here we investigate the highly unusual helimagnetic phases recently reported in EuIn2As2, which has been identified as a candidate for an axion insulator. Using resonant elastic x-ray scattering we show that the two types of magnetic order observed in EuIn2As2 are spatially uniform phases with commensurate chiral magnetic structures, ruling out a possible phase-separation scenario, and we propose that entropy associated with low energy spin fluctuations plays a significant role in driving the phase transition between them. Our results establish that the magnetic order in EuIn2As2 satisfies the symmetry requirements for an axion insulator.


Assuntos
Eletrônica , Raios X , Radiografia , Fenômenos Físicos , Transição de Fase
5.
Magn Reson Imaging ; 33(9): 1098-1105, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26117700

RESUMO

High field MRI has been applied to high-resolution structural and functional imaging of the brain. Echo planar imaging (EPI) is an ultrafast acquisition technique widely used in diffusion imaging, functional MRI and perfusion imaging. However, it suffers from geometric and intensity distortions caused by static magnetic field inhomogeneity, which is worse at higher field strengths. Such susceptibility artifacts are particularly severe in relation to the small size of the mouse brain. In this study we compared different distortion correction methods, including nonlinear registration, field map-based, and reversed phase-encoding-based approaches, on quantitative imaging of T1 and perfusion in the mouse brain acquired by spin-echo EPI with inversion recovery and pseudo-continuous arterial spin labeling, respectively, at 7 T. Our results showed that the 3D reversed phase-encoding correction outperformed other methods in terms of geometric fidelity, and that conventional field map-based correction could be improved by combination with affine transformation to reduce the bias in the field map. Both methods improved quantification with smaller fitting error and regional variation. These approaches offer robust correction of EPI distortions at high field strengths and hence could lead to more accurate co-registration and quantification of imaging biomarkers in both clinical and preclinical applications.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem Ecoplanar/métodos , Campos Magnéticos , Animais , Artefatos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...