Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36360832

RESUMO

Ferrous waste by-products from the metallurgical industry have a high potential for valorization in the context of the circular economy, and can be converted to value-added products used in environmental remediation. This research reviews the latest data available in the literature with a focus on: (i) sources from which these types of iron-based wastes originate; (ii) the types of ferrous compounds that result from different industries; (iii) the different methods (with respect to the circular economy) used to convert them into products applied in water and wastewater decontamination; (iv) the harmful effects ferrous wastes can have on the environment and human health; and (v) the future perspectives for these types of waste.


Assuntos
Resíduos Industriais , Águas Residuárias , Humanos , Resíduos Industriais/análise , Água , Descontaminação , Resíduos/análise
2.
Materials (Basel) ; 14(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068413

RESUMO

The need to recycle and develop nanomaterials from waste, and use them in environmental applications has become increasingly imperative in recent decades. A new method to convert the mill scale, a waste of the steel industry that contains large quantity of iron and low impurities into a nanoadsorbent that has the necessary properties to be used for water purification is presented. The mill scale waste was used as raw material for iron oxide nanopowder. A thorough characterization was performed in each stage of the conversion process from the mill scale powder to magnetic nanopowder including XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmission electron microscopy), BET (Brunauer, Emmett and Teller) and magnetization properties. Iron oxide nanoparticles were approximately 5-6 nm with high specific surface area and good magnetic properties. These are the necessary properties that a magnetic nanopowder must have in order to be used as nanoadsorbents in the heavy metal removal from waters. The iron oxide nanoparticles were evaluated as adsorbents for the removal of Cu, Cd and Ni ions.

3.
J Environ Qual ; 42(1): 129-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673747

RESUMO

The toxicity of heavy metals for the environment can be solved by using the adsorption properties of magnetic nanomaterials. These types of nanomaterials can remove pollutants, especially from wastewaters. This study was conducted to determine whether two magnetic nanomaterials can be used as adsorbents for heavy metals (Cr, Cd, Cu, Zn, and Ni) from aqueous solutions under acidic conditions. Qualitative and quantitative elemental information and structural and surface characteristics before and after use as adsorbents were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The obtained data showed a good correlation with the Langmuir adsorption model using the two magnetic nanomaterials in aqueous solutions. The crystalline structure of the FeO powder was identified with XRD. The TEM images of FeO nanoparticles indicated a good dispersion of particles of 85.5 nm. The SEM analysis for FeO-PAA (magnetite covered with sodium alginate) showed spherical particles of magnetite wrapped into the polymer with dimension of ∼200 nm. According to the adsorption Langmuir model, the removal efficiency for uncoated FeO decreased in order: Cr(VI) > Cu(II) > Zn(II) > Ni(II) > Cd(II). For the FeO-PAA nanocomposite (45% w/w Fe in a mass of polymer), the adsorption phenomena appears as follows: Cr(VI) > Cd(II) > Cu(II) ∼ Zn(II) > Ni(II). Langmuir parameters indicated a favorable monolayer adsorption at pH 2.5. The nanocomposite FeO-PAA can be used as an adsorbent with the same performance as uncoated FeO but with the advantage of stability under conditions where industrial wastewaters have an acidic pH.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Metais Pesados/química , Nanoestruturas , Águas Residuárias , Poluentes Químicos da Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...