Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; : 100094, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029627

RESUMO

FB_MR5 is an NLR protein identified from wild apple species Malus × robusta 5 conferring disease resistance to bacterial fire blight. FB_MR5 (hereafter MrMR5) recognizes the cysteine protease effector EaAvrRpt2 secreted from the causal agent of bacterial fire blight, Erwinia amylovora. We previously reported that MrMR5 is activated by the C-terminal cleavage product (ACP3) of Malus domestica RIN4 (MdRIN4) produced by EaAvrRpt2-directed proteolysis. Here, we show that MbMR5 from a wild apple species Malus baccata share 99.4% amino acid sequence identity with MrMR5. Surprisingly, transient expression of MbMR5 in Nicotiana benthamiana showed auto-activity in contrast to MrMR5. Domain swap and mutational analyses revealed that one amino acid polymorphism in the MbMR5 CC domain is critical in enhancing auto-activity. We further demonstrated that MrMR5 carrying seven amino acid polymorphisms present in MbMR5 is not activated by MdRIN4 ACP3 but recognizes AvrRpt2 without MdRIN4 in Nicotiana benthamiana. Our findings indicate that naturally occurring polymorphisms of MR5 natural variants can confer its cell death-inducing activity and the effector recognition mechanism likely due to altered compatibility with RIN4.

2.
Small ; : e2402585, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860560

RESUMO

Sodium-ion batteries (SIBs) have emerged as a compelling alternative to lithium-ion batteries (LIBs), exhibiting comparable electrochemical performance while capitalizing on the abundant availability of sodium resources. In SIBs, P2/O3 biphasic cathodes, despite their high energy, require furthur improvements in stability to meet current energy demands. This study introduces a systematic methodology that leverages the meta-heuristically assisted NSGA-II algorithm to optimize multi-element doping in electrode materials, aiming to transcend conventional trial-and-error methods and enhance cathode capacity by the synergistic integration of P2 and O3 phases. A comprehensive phase analysis of the meta-heuristically designed cathode material Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2 (D-NFMO) is presented, showcasing its remarkable initial reversible capacity of 175.5 mAh g-1 and exceptional long-term cyclic stability in sodium cells. The investigation of structural composition and the stabilizing mechanisms is performed through the integration of multiple characterization techniques. Remarkably, the irreversible phase transition of P2→OP4 in D-NFMO is observed to be dramatically suppressed, leading to a substantial enhancement in cycling stability. The comparison with the pristine cathode (P-NFMO) offers profound insights into the long-term electrochemical stability of D-NFMO, highlighting its potential as a high-voltage cathode material utilizing abundant earth elements in SIBs. This study opens up new possibilities for future advancements in sodium-ion battery technology.

3.
Proc Natl Acad Sci U S A ; 121(11): e2309263121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457521

RESUMO

Integrative and conjugative elements (ICEs) are self-transmissible mobile elements that transfer functional genetic units across broad phylogenetic distances. Accessory genes shuttled by ICEs can make significant contributions to bacterial fitness. Most ICEs characterized to date encode readily observable phenotypes contributing to symbiosis, pathogenicity, and antimicrobial resistance, yet the majority of ICEs carry genes of unknown function. Recent observations of rapid acquisition of ICEs in a pandemic lineage of Pseudomonas syringae pv. actinidae led to investigation of the structural and functional diversity of these elements. Fifty-three unique ICE types were identified across the P. syringae species complex. Together they form a distinct family of ICEs (PsICEs) that share a distant relationship to ICEs found in Pseudomonas aeruginosa. PsICEs are defined by conserved backbone genes punctuated by an array of accessory cargo genes, are highly recombinogenic, and display distinct evolutionary histories compared to their bacterial hosts. The most common cargo is a recently disseminated 16-kb mobile genetic element designated Tn6212. Deletion of Tn6212 did not alter pathogen growth in planta, but mutants displayed fitness defects when grown on tricarboxylic acid (TCA) cycle intermediates. RNA-seq analysis of a set of nested deletion mutants showed that a Tn6212-encoded LysR regulator has global effects on chromosomal gene expression. We show that Tn6212 responds to preferred carbon sources and manipulates bacterial metabolism to maximize growth.


Assuntos
Conjugação Genética , Transferência Genética Horizontal , Filogenia , Transferência Genética Horizontal/genética , Evolução Biológica , Elementos de DNA Transponíveis/genética
4.
Plant J ; 118(3): 839-855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38271178

RESUMO

Arabidopsis thaliana WRKY proteins are potential targets of pathogen-secreted effectors. RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1; AtWRKY52) is a well-studied Arabidopsis nucleotide-binding and leucine-rich repeat (NLR) immune receptor carrying a C-terminal WRKY domain that functions as an integrated decoy. RRS1-R recognizes the effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia pseudosolanacearum by direct interaction through its WRKY domain. AvrRps4 and PopP2 were previously shown to interact with several AtWRKYs. However, how these effectors selectively interact with their virulence targets remains unknown. Here, we show that several members of subgroup IIIb of the AtWRKY family are targeted by AvrRps4 and PopP2. We demonstrate that several AtWRKYs induce cell death when transiently expressed in Nicotiana benthamiana, indicating the activation of immune responses. AtWRKY54 was the only cell death-inducing AtWRKY that interacted with both AvrRps4 and PopP2. We found that AvrRps4 and PopP2 specifically suppress AtWRKY54-induced cell death. We also demonstrate that the amino acid residues required for the avirulence function of AvrRps4 and PopP2 are critical for suppressing AtWRKY54-induced cell death. AtWRKY54 residues predicted to form a binding interface with AvrRps4 were predominantly located in the DNA binding domain and necessary for inducing cell death. Notably, one AtWRKY54 residue, E164, contributes to affinity with AvrRps4 and is exclusively present among subgroup IIIb AtWRKYs, yet is located outside of the DNA-binding domain. Surprisingly, AtWRKY54 mutated at E164 evaded AvrRps4-mediated cell death suppression. Taking our observations together, we propose that AvrRp4 and PopP2 specifically target AtWRKY54 to suppress plant immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Bactérias , Nicotiana , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Arabidopsis/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Morte Celular , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Nicotiana/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Pseudomonas syringae/patogenicidade , Ralstonia/patogenicidade , Ralstonia/genética , Ralstonia solanacearum/patogenicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Mol Cells ; 46(11): 710-724, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37968984

RESUMO

The plant defense responses to microbial infection are tightly regulated and integrated with the developmental program for optimal resources allocation. Notably, the defense- associated hormone salicylic acid (SA) acts as a promoter of flowering while several plant pathogens actively target the flowering signaling pathway to promote their virulence or dissemination. Ralstonia pseudosolanacearum inject tens of effectors in the host cells that collectively promote bacterial proliferation in plant tissues. Here, we characterized the function of the broadly conserved R. pseudosolanacearum effector RipL, through heterologous expression in Arabidopsis thaliana . RipL-expressing transgenic lines presented a delayed flowering, which correlated with a low expression of flowering regulator genes. Delayed flowering was also observed in Nicotiana benthamiana plants transiently expressing RipL. In parallel, RipL promoted plant susceptibility to virulent strains of Pseudomonas syringae in the effector-expressing lines or when delivered by the type III secretion system. Unexpectedly, SA accumulation and SA-dependent immune signaling were not significantly affected by RipL expression. Rather, the RNA-seq analysis of infected RipL-expressing lines revealed that the overall amplitude of the transcriptional response was dampened, suggesting that RipL could promote plant susceptibility in an SA-independent manner. Further elucidation of the molecular mechanisms underpinning RipL effect on flowering and immunity may reveal novel effector functions in host cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pseudomonas syringae , Imunidade Inata , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
Nat Genet ; 55(9): 1579-1588, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640880

RESUMO

Potato (Solanum tuberosum) and tomato (Solanum lycopersicon) crops suffer severe losses to late blight caused by the oomycete pathogen Phytophthora infestans. Solanum americanum, a relative of potato and tomato, is globally distributed and most accessions are highly blight resistant. We generated high-quality reference genomes of four S. americanum accessions, resequenced 52 accessions, and defined a pan-NLRome of S. americanum immune receptor genes. We further screened for variation in recognition of 315P. infestans RXLR effectors in 52 S. americanum accessions. Using these genomic and phenotypic data, we cloned three NLR-encoding genes, Rpi-amr4, R02860 and R04373, that recognize cognate P. infestans RXLR effectors PITG_22825 (AVRamr4), PITG_02860 and PITG_04373. These genomic resources and methodologies will support efforts to engineer potatoes with durable late blight resistance and can be applied to diseases of other crops.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Solanum/genética , Solanum tuberosum/genética , Phytophthora infestans/genética , Solanum lycopersicum/genética , Genômica , Produtos Agrícolas
8.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37530518

RESUMO

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Assuntos
Produtos Agrícolas , Poliploidia , Sequência de Bases , Mapeamento Cromossômico/métodos , Mutação , Fenótipo , Produtos Agrícolas/genética , Genoma de Planta/genética , Edição de Genes
9.
Small ; 19(44): e2302973, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37377256

RESUMO

Rechargeable zinc aqueous batteries are key alternatives for replacing toxic, flammable, and expensive lithium-ion batteries in grid energy storage systems. However, these systems possess critical weaknesses, including the short electrochemical stability window of water and intrinsic fast zinc dendrite growth. Hydrogel electrolytes provide a possible solution, especially cross-linked zwitterionic polymers that possess strong water retention ability and high ionic conductivity. Herein, an in situ prepared fiberglass-incorporated dual-ion zwitterionic hydrogel electrolyte with an ionic conductivity of 24.32 mS cm-1 , electrochemical stability window up to 2.56 V, and high thermal stability is presented. By incorporating this hydrogel electrolyte of zinc and lithium triflate salts, a zinc//LiMn0.6 Fe0.4 PO4 pouch cell delivers a reversible capacity of 130 mAh g-1 in the range of 1.0-2.2 V at 0.1C, and the test at 2C provides an initial capacity of 82.4 mAh g-1 with 71.8% capacity retention after 1000 cycles with a coulombic efficiency of 97%. Additionally, the pouch cell is fire resistant and remains safe after cutting and piercing.

10.
New Phytol ; 239(5): 1935-1953, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37334551

RESUMO

Some nucleotide-binding and leucine-rich repeat receptors (NLRs) indirectly detect pathogen effectors by monitoring their host targets. In Arabidopsis thaliana, RIN4 is targeted by multiple sequence-unrelated effectors and activates immune responses mediated by RPM1 and RPS2. These effectors trigger cell death in Nicotiana benthamiana, but the corresponding NLRs have yet not been identified. To identify N. benthamiana NLRs (NbNLRs) that recognize Arabidopsis RIN4-targeting effectors, we conducted a rapid reverse genetic screen using an NbNLR VIGS library. We identified that the N. benthamiana homolog of Ptr1 (Pseudomonas tomato race 1) recognizes the Pseudomonas effectors AvrRpt2, AvrRpm1, and AvrB. We demonstrated that recognition of the Xanthomonas effector AvrBsT and the Pseudomonas effector HopZ5 is conferred independently by the N. benthamiana homolog of Ptr1 and ZAR1. Interestingly, the recognition of HopZ5 and AvrBsT is contributed unequally by Ptr1 and ZAR1 in N. benthamiana and Capsicum annuum. In addition, we showed that the RLCK XII family protein JIM2 is required for the NbZAR1-dependent recognition of AvrBsT and HopZ5. The recognition of sequence-unrelated effectors by NbPtr1 and NbZAR1 provides an additional example of convergently evolved effector recognition. Identification of key components involved in Ptr1 and ZAR1-mediated immunity could reveal unique mechanisms of expanded effector recognition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas/metabolismo , Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Pseudomonas , Receptores Imunológicos/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas syringae/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
11.
Curr Opin Plant Biol ; 74: 102398, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295296

RESUMO

Recognition of pathogen effectors is a crucial step for triggering plant immunity. Resistance (R) genes often encode for nucleotide-binding leucine-rich repeat receptors (NLRs), and NLRs detect effectors from pathogens to trigger effector-triggered immunity (ETI). NLR recognition of effectors is observed in diverse forms where NLRs directly interact with effectors or indirectly detect effectors by monitoring host guardees/decoys (HGDs). HGDs undergo different biochemical modifications by diverse effectors and expand the effector recognition spectrum of NLRs, contributing robustness to plant immunity. Interestingly, in many cases of the indirect recognition of effectors, HGD families targeted by effectors are conserved across the plant species while NLRs are not. Notably, a family of diversified HGDs can activate multiple non-orthologous NLRs across plant species. Further investigation on HGDs would reveal the mechanistic basis of how the diversification of HGDs confers novel effector recognition by NLRs.


Assuntos
Proteínas de Plantas , Plantas , Proteínas de Plantas/genética , Plantas/genética , Imunidade Vegetal/genética , Doenças das Plantas/genética
12.
Plant Commun ; 4(6): 100640, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37349986

RESUMO

Bacterial wilt disease caused by several Ralstonia species is one of the most destructive diseases in Solanaceae crops. Only a few functional resistance genes against bacterial wilt have been cloned to date. Here, we show that the broadly conserved type III secreted effector RipY is recognized by the Nicotiana benthamiana immune system, leading to cell death induction, induction of defense-related gene expression, and restriction of bacterial pathogen growth. Using a multiplexed virus-induced gene-silencing-based N. benthamiana nucleotide-binding and leucine-rich repeat receptor (NbNLR) library, we identified a coiled-coil (CC) nucleotide-binding and leucine-rich repeat receptor (CNL) required for recognition of RipY, which we named RESISTANCE TO RALSTONIA SOLANACEARUM RIPY (RRS-Y). Genetic complementation assays in RRS-Y-silenced plants and stable rrs-y knockout mutants demonstrated that RRS-Y is sufficient to activate RipY-induced cell death and RipY-induced immunity to Ralstonia pseudosolanacearum. RRS-Y function is dependent on the phosphate-binding loop motif of the nucleotide-binding domain but independent of the characterized signaling components ENHANCED DISEASE SUSCEPTIBILITY 1, ACTIVATED DISEASE RESISTANCE 1, and N REQUIREMENT GENE 1 and the NLR helpers NB-LRR REQUIRED FOR HR-ASSOCIATED CELL DEATH-2, -3, and -4 in N. benthamiana. We further show that RRS-Y localization at the plasma membrane is mediated by two cysteine residues in the CC domain and is required for RipY recognition. RRS-Y also broadly recognizes RipY homologs across Ralstonia species. Lastly, we show that the C-terminal region of RipY is indispensable for RRS-Y activation. Together, our findings provide an additional effector/receptor pair system to deepen our understanding of CNL activation in plants.


Assuntos
Nicotiana , Ralstonia solanacearum , Nicotiana/microbiologia , Proteínas de Plantas/metabolismo , Leucina , Resistência à Doença/genética , Ralstonia solanacearum/metabolismo , Membrana Celular/metabolismo , Nucleotídeos
13.
Mol Plant Pathol ; 24(10): 1312-1318, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37310613

RESUMO

The bacterial wilt disease caused by soilborne bacteria of the Ralstonia solanacearum species complex (RSSC) threatens important crops worldwide. Only a few immune receptors conferring resistance to this devastating disease are known so far. Individual RSSC strains deliver around 70 different type III secretion system effectors into host cells to manipulate the plant physiology. RipE1 is an effector conserved across the RSSC and triggers immune responses in the model solanaceous plant Nicotiana benthamiana. Here, we used multiplexed virus-induced gene silencing of the nucleotide-binding and leucine-rich repeat receptor family to identify the genetic basis of RipE1 recognition. Specific silencing of the N. benthamiana homologue of Solanum lycopersicoides Ptr1 (confers resistance to Pseudomonas syringae pv. tomato race 1) gene (NbPtr1) completely abolished RipE1-induced hypersensitive response and immunity to Ralstonia pseudosolanacearum. The expression of the native NbPtr1 coding sequence was sufficient to restore RipE1 recognition in Nb-ptr1 knockout plants. Interestingly, RipE1 association with the host cell plasma membrane was necessary for NbPtr1-dependent recognition. Furthermore, NbPtr1-dependent recognition of RipE1 natural variants is polymorphic, providing additional evidence for the indirect mode of activation of NbPtr1. Altogether, this work supports NbPtr1 relevance for resistance to bacterial wilt disease in Solanaceae.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/genética , Nicotiana/microbiologia , Ralstonia solanacearum/genética , Pseudomonas syringae/genética , Membrana Celular/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Bactérias/metabolismo
14.
Mol Plant Pathol ; 24(8): 866-881, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37038612

RESUMO

Sclerotinia sclerotiorum is a broad host range necrotrophic fungal pathogen, which causes disease on many economically important crop species. S. sclerotiorum has been shown to secrete small effector proteins to kill host cells and acquire nutrients. We set out to discover novel necrosis-inducing effectors and characterize their activity using transient expression in Nicotiana benthamiana leaves. Five intracellular necrosis-inducing effectors were identified with differing host subcellular localization patterns, which were named intracellular necrosis-inducing effector 1-5 (SsINE1-5). We show for the first time a broad host range pathogen effector, SsINE1, that uses an RxLR-like motif to enter host cells. Furthermore, we provide preliminary evidence that SsINE5 induces necrosis via an NLR protein. All five of the identified effectors are highly conserved in globally sourced S. sclerotiorum isolates. Taken together, these results advance our understanding of the virulence mechanisms employed by S. sclerotiorum and reveal potential avenues for enhancing genetic resistance to this damaging fungal pathogen.


Assuntos
Ascomicetos , Especificidade de Hospedeiro , Morte Celular , Necrose , Doenças das Plantas/microbiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-36898053

RESUMO

Although there are many cathode candidates for sodium-ion batteries (NIBs), NaCrO2 remains one of the most attractive materials due to its reasonable level of capacity, nearly flat reversible voltages, and high thermal stability. However, the cyclic stability of NaCrO2 needs to be further improved in order to compete with other state-of-the-art NIB cathodes. In this study, we show that Cr2O3-coated and Al-doped NaCrO2, which is synthesized through a simple one-pot synthesis, can achieve unprecedented cyclic stability. We confirm the preferential formation of a Cr2O3 shell and a Na(Cr1-2xAl2x)O2 core, rather than xAl2O3/NaCrO2 or Na1/1+2x(Cr1/1+2xAl2x/1+2x)O2, through spectroscopic and microscopic methods. The core/shell compounds exhibit superior electrochemical properties compared to either Cr2O3-coated NaCrO2 without Al dopants or Al-doped NaCrO2 without shells because of their synergistic contributions. As a result, Na(Cr0.98Al0.02)O2 with a thin Cr2O3 layer (5 nm) shows no capacity fading during 1000 charge/discharge cycles while maintaining the rate capability of pristine NaCrO2. In addition, the compound is inert against humid air and water. We also discuss the reasons for the excellent performance of Cr2O3-coated Na(Cr1-2xAl2x)O2.

16.
iScience ; 26(1): 105758, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590175

RESUMO

Extensive changes in the legal, commercial and technical requirements in engineering fields have necessitated automated real-time structural health monitoring (SHM) and instantaneous verification. An integrated system with mechanoluminescence (ML) and dual artificial intelligence (AI) modules with subsidiary finite element method (FEM) simulation is designed for in situ SHM and instantaneous verification. The ML module detects the exact position of a crack tip and evaluates the significance of existing cracks with a plastic stress-intensity factor (PSIF; K P ). ML fields and their corresponding K p M L values are referenced and verified using the FEM simulation and bidirectional generative adversarial network (GAN). Well-trained forward and backward GANs create fake FEM and ML images that appear authentic to observers; a convolutional neural network is used to postulate precise PSIFs from fake images. Finally, the reliability of the proposed system to satisfy existing commercial requirements is validated in terms of tension, compact tension, AI, and instrumentation.

17.
RSC Adv ; 12(48): 31156-31166, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36349042

RESUMO

When constructing a partially occupied model structure for use in density functional theory (DFT) and ab initio molecular dynamics (AIMD) calculations, the selection of appropriate configurations has been a vexing issue. Random sampling and the ensuing low-Coulomb-energy entry selection have been routine. Here, we report a more efficient way of selecting low-Coulomb-energy configurations for a representative solid electrolyte, Li6PS5Cl. Metaheuristics (genetic algorithm, particle swarm optimization, cuckoo search, and harmony search), Bayesian optimization, and modified deep Q-learning are utilized to search the large configurational space. Ten configuration candidates that exhibit relatively low Coulomb energy values and thereby lead to more convincing DFT and AIMD calculation results are pinpointed along with computational cost savings by the assistance of the above-described optimization algorithms, which constitute an integrated optimization strategy. Consequently, the integrated optimization strategy outperforms the conventional random sampling-based selection strategy.

18.
Adv Sci (Weinh) ; 9(28): e2201648, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35863915

RESUMO

A tandem (two-step) particle swarm optimization (PSO) algorithm is implemented in the argyrodite-based multidimensional composition space for the discovery of an optimal argyrodite composition, i.e., with the highest ionic conductivity (7.78 mS cm-1 ). To enhance the industrial adaptability, an elaborate pellet preparation procedure is not used. The optimal composition (Li5.5 PS4.5 Cl0.89 Br0.61 ) is fine-tuned to enhance its practical viability by incorporating oxygen in a stepwise manner. The final composition (Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 ), which exhibits an ionic conductivity (σion ) of 6.70 mS cm-1 and an activation barrier of 0.27 eV, is further characterized by analyzing both its moisture and electrochemical stability. Relative to the other compositions, the exposure of Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 to a humid atmosphere results in the least amount of H2 S released and a negligible change in structure. The improvement in the interfacial stability between the Li(Ni0.9 Co0.05 Mn0.05 )O2 cathode and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 also results in greater specific capacity during fast charge/discharge. The structural and chemical features of Li5.5 PS4.5 Cl0.89 Br0.61 and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 argyrodites are characterized using synchrotron X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. This work presents a novel argyrodite composition with favorably balanced properties while providing broad insights into material discovery methodologies with applications for battery development.

19.
J Genet Genomics ; 49(8): 823-832, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760352

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker, a devastating disease threatening the Actinidia fruit industry. In a search for non-host resistance genes against Psa, we find that the nucleotide-binding leucine-rich repeat receptor (NLR) protein ZAR1 from both Arabidopsis and Nicotiana benthamiana (Nb) recognizes HopZ5 and triggers cell death. The recognition requires ZED1 in Arabidopsis and JIM2 in Nb plants, which are members of the ZRK pseudokinases and known components of the ZAR1 resistosome. Surprisingly, Arabidopsis ZAR1 and RPM1, another NLR known to recognize HopZ5, confer disease resistance to HopZ5 in a strain-specific manner. Thus, ZAR1, but not RPM1, is solely required for resistance to P. s. maculicola ES4326 (Psm) carrying hopZ5, whereas RPM1 is primarily required for resistance to P. s. tomato DC3000 (Pst) carrying hopZ5. Furthermore, the ZAR1-mediated resistance to Psm hopZ5 in Arabidopsis is insensitive to SOBER1, which encodes a deacetylase known to suppress the RPM1-mediated resistance to Pst hopZ5. In addition, hopZ5 enhances P. syringae virulence in the absence of ZAR1 or RPM1 and that SOBER1 abolishes such virulence function. Together the study suggests that ZAR1 may be used for improving Psa resistance in Actinidia and uncovers previously unknown complexity of effector-triggered immunity and effector-triggered virulence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Bactérias , Hidrolases de Éster Carboxílico , Proteínas de Transporte , Proteínas NLR , Fosfotransferases , Doenças das Plantas , Pseudomonas syringae
20.
Adv Mater ; 34(29): e2202137, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35502520

RESUMO

The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium-ion batteries (SIBs). Herein, an in-depth phase analysis of developed Na1-x TMO2 cathode materials, Na0.76 Ni0.20 Fe0.40 Mn0.40 O2 with P2- and O3-type phases (NFMO-P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed-phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first-principles calculations support the evidence of the formation of a binary NFMO-P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O'3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P- and O-type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5-4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high-voltage cathode materials for SIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...