Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 43(6): 1283-1286, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543272

RESUMO

Dynamic stringy objects such as liquid rims and ligaments are frequently observed in important applications such as the multiphase breakup of fuel droplets. We develop a new method based on digital in-line holography to automatically measure complicated stringy objects. A static spring mounted on a rotator is measured to validate the effectiveness and accuracy of the method. The sections are extracted along the skeleton of the spring in a depth-of-field extended image and then sized and located as individual particles using a hybrid method. The surface points of sections are stitched together to visualize the entire spring. Local thickness errors smaller than 5.3%, and z errors smaller than 230 µm are achieved. This method is applied to characterize the spatial-temporal features of the liquid rim formed in the bag-type regime of the aerodynamic breakup of a falling drop. The evolution of the rim/ligament structures is continuously captured in seven frames, lasting in 1.58 ms. This Letter extends the application of digital holography as an effective 3D diagnostic tool.

2.
Appl Opt ; 55(11): 2892-903, 2016 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-27139851

RESUMO

High-speed (20 kHz) digital in-line holography (DIH) is applied for 3D quantification of the size and velocity of fragments formed from the impact of a single water drop onto a thin film of water and burning aluminum particles from the combustion of a solid rocket propellant. To address the depth-of-focus problem in DIH, a regression-based multiframe tracking algorithm is employed, and out-of-plane experimental displacement accuracy is shown to be improved by an order-of-magnitude. Comparison of the results with previous DIH measurements using low-speed recording shows improved positional accuracy with the added advantage of detailed resolution of transient dynamics from single experimental realizations. The method is shown to be particularly advantageous for quantification of particle mass flow rates. For the investigated particle fields, the mass flows rates, which have been automatically measured from single experimental realizations, are found to be within 8% of the expected values.

3.
Opt Lett ; 38(11): 1893-5, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23722780

RESUMO

Quantitative application of digital in-line holography (DIH) to characterize multiphase fragmentation is demonstrated. DIH is applied to record sequential holograms of the breakup of an ethanol droplet in an aerodynamic flow field. Various stages of the breakup process are recorded, including deformation, bag growth, bag breakup, and rim breakup. A recently proposed hybrid method is applied to extract the three-dimensional (3D) location and size of secondary droplets as well as the 3D morphology of the rim. Particle matching between sequential frames is used to determine the velocity. Coincidence with the results obtained from phase Doppler anemometry measurement demonstrates the accuracy of measurement by DIH and the hybrid method.


Assuntos
Holografia/métodos , Hidrodinâmica
4.
J Pharm Sci ; 101(6): 2213-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22418943

RESUMO

Spatially resolved drop size, drop velocity, and spray volume flux measurements for sprays produced by a commonly used pharmaceutical coating nozzle were performed in this study. Results showed three distinctive spray patterns: Gaussian, homogeneous, and dumbbell shaped. We found that transition from a dumbbell-shaped to a homogeneous pattern is related to the shaping air-induced breakup of already formed drops: depending on the drop size upstream of the location where the shaping air flows meet (i.e., the "junction" point), the drop viscosity, and the magnitude of the shaping air velocity, the shaping air can either pinch the spray or cause additional drop breakup. When the former outweighs the latter, the dumbbell-shaped pattern occurs; the homogeneous pattern is present when the opposite occurs. A corollary to this experimental interpretation is that whether additional drop breakup homogenizes the sprays or pinches, it is related to a Weber number (We) that is calculated using drop sizes upstream of the junction point, drop viscosity and surface tension, and the shaping air velocity at the junction point. With this idea in mind, we propose a We-based scaling method for optimizing the uniformity of air-assist spray patterns.


Assuntos
Química Farmacêutica , Tensão Superficial , Viscosidade
5.
Anal Chem ; 78(24): 8549-55, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17165852

RESUMO

A droplet pickup and other mechanisms have been suggested for the ionization of biomolecules like peptides and proteins by desorption electrospray ionization. To verify this hypothesis phase Doppler particle analysis was used to study the sizes and velocities of droplets involved in DESI. It was found that impacting droplets typically have velocities of 120 m/s and average diameters of 2-4 microm. Small differences in sprayer construction influence the operating conditions at which droplets of these dimensions are produced. Under these conditions, the kinetic energy per impacting water molecule is less than 0.6 meV and sputtering through momentum transfer during collisions or ionization by other electronic processes is unlikely. Droplets arrive at the surface with velocities well below the speed of sound in common materials, thereby excluding the possibility of ionization by shockwave formation. Some droplets appear to roll along the surface, increasing contact time and presumably the amount of material that is taken up into droplets during conditions typical of the DESI experiment.

6.
Drug Dev Ind Pharm ; 30(3): 319-26, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15109031

RESUMO

Atomization of aqueous polymer solutions is a key step in the formulation of several pharmaceutical products. Droplet size control is essential in order to produce pharmaceutical products with the desired properties. The purpose of this paper is to investigate design issues for an inside-out type of effervescent atomizer used to spray water and aqueous solutions of polyvinylpyrrolidone (Kollidon K-30) and hydroxypropyl methylcellulose (Pharmacoat 603). The atomizer was operated at air-to-liquid mass ratios of 0.1, 0.3, and 0.5 and a feed pressure of 1172 kPa. Fluid viscosities ranged from 1 to 47 mPa.s. The influence of several atomizer design features was considered, including exit orifice length-to-diameter ratio, exit orifice diameter, the total area of the air injection holes, the distance between the air injection point and the exit orifice, the diameter of the mixing chamber, and the orientation of both air and liquid flows. Droplet size distributions were shown to vary significantly with the atomizer's exit orifice diameter, air injector design, and air injector distance to the exit orifice. In all cases air-to-liquid mass ratio played a key role in the mean droplet size. The design of the atomizer was shown to have the most pronounced effect on the mean droplet size at the lowest air-to-liquid mass ratios. Optimization of the atomizer design is very important in order to obtain small droplet sizes in pharmaceutical processes where the amount of air/gas should be minimized, e.g., closed-cycle spray drying and agglomeration processes.


Assuntos
Nebulizadores e Vaporizadores , Tecnologia Farmacêutica/instrumentação , Fenômenos Químicos , Química Farmacêutica , Físico-Química , Derivados da Hipromelose , Metilcelulose/análogos & derivados , Metilcelulose/química , Tamanho da Partícula , Povidona/química , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...