Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Soft Matter ; 19(30): 5824-5834, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37470164

RESUMO

Soft condensed matter structures often challenge us with complex many-body phenomena governed by collective modes spanning wide spatial and temporal domains. In order to successfully tackle such problems, mesoscopic coarse-grained (CG) statistical models are being developed, providing a dramatic reduction in computational complexity. CG models provide an intermediate step in the complex statistical framework of linking the thermodynamics of condensed phases with the properties of their constituent atoms and molecules. These allow us to offload part of the problem to the CG model itself and reformulate the remainder in terms of reduced CG phase space. However, such exchange of pawns to chess pieces, or 'Hamiltonian renormalization', is a radical step and the thermodynamics of the primary atomic and CG models could be quite distinct. Here, we present a comprehensive study of the phase diagram including binodal and interfacial properties of a dissipative particle dynamics (DPD) model, extended to include finite-range attraction to support the liquid-gas equilibrium. Despite the similarities with the atomic model potentials, its phase envelope is markedly different featuring several anomalies such as an unusually broad liquid range, change in concavity of the liquid coexistence branch with variation of the model parameters, volume contraction on fusion, temperature of maximum density in the liquid phase and negative thermal expansion in the solid phase. These results provide new insight into the connection between simple potential models and complex emergent condensed matter phenomena.

2.
Phys Rev Lett ; 115(11): 117801, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406855

RESUMO

An electronically coarse-grained model for water reveals a persistent vestige of the liquid-gas transition deep into the supercritical region. A crossover in the density dependence of the molecular dipole arises from the onset of nonpercolating hydrogen bonds. The crossover points coincide with the Widom line in the scaling region but extend farther, tracking the heat capacity maxima, offering evidence for liquidlike and gaslike state points in a "one-phase" fluid. The effect is present even in dipole-limit models, suggesting that it is common for all molecular liquids exhibiting dipole enhancement in the liquid phase.

3.
Phys Rev Lett ; 110(22): 227801, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767748

RESUMO

We introduce an electronically coarse-grained description of water representing all long range, many-body electronic responses via an embedded quantum oscillator. Leading-order response coefficients and gas phase electrostatic moments are exactly reproduced. Molecular dynamics, using electronic path integral sampling, shows that this framework is sufficient for a realistic liquid to emerge naturally with transferability extending further to nonambient state points and to the free water surface. The model allows the strength of many-body dispersion and polarization to be adjusted independently and these are found to have significant effects on the condensed phase.

4.
J Chem Phys ; 120(8): 3855-63, 2004 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15268551

RESUMO

Transport properties including collective and tracer diffusivities of nitrogen, modeled as a diatomic molecule, in single walled carbon nanotubes have been studied by equilibrium molecular dynamics at different temperatures and as a function of pressure. It is shown that while the asymptotic decay of the translational and rotational velocity autocorrelation function is algebraic, the collective velocity decays exponentially with the relaxation time related to the interfacial friction. The tracer diffusivity in the nanochannel, which is comparable in magnitude with diffusivity in the equilibrium bulk phase, depends only weakly on the conditions at the fluid-solid interface, whereas the collective diffusivity is a strong function of the hydrodynamic boundary conditions and is found to be three orders of magnitude higher than self-diffusivity in carbon nanotubes and for the comparatively rough surface of the rare-gas tube it is one order of magnitude greater. A relationship between the collective diffusivity and the Maxwell coefficient describing wall collisions is obtained. The transport coefficients appear to be insensitive to the long-range details of the potential function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA