Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Technol Adv Mater ; 22(1): 85-99, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185387

RESUMO

In the present paper we discuss correlations between crystal structure and magnetic properties of epitaxial ε-Fe2O3 films grown on GaN. The large magnetocrystalline anisotropy and room temperature multiferroic properties of this exotic iron oxide polymorph, make it a perspective material for the development of low power consumption magnetic media storage devices. Extending our recent progress in PLD growth of ε-Fe2O3 on the surface of technologically important nitride semiconductors, we apply reciprocal space tomography by electron and x-ray diffraction to investigate the break of crystallographic symmetry occurring at the oxide-nitride interface resulting in the appearance of anisotropic crystallographic disorder in the sub-100 nm ε-Fe2O3 films. The orthorhombic-on-hexagonal nucleation scenario is shown responsible for the development of a peculiar columnar structure observed in ε-Fe2O3 by means of HRTEM and AFM. The complementary information on the direct and reciprocal space structure of the columnar ε-Fe2O3 films is obtained by various techniques and correlated to their magnetic properties. The peculiar temperature dependence of magnetization studied by the small-field magnetization derivative method and by neutron diffraction reveals the existence of a magnetic softening below 150 K, similar to the one observed earlier solely in nanoparticles. The magnetization reversal in ε-Fe2O3 films probed by X-ray magnetic circular dichroism is found different from the behavior of the bulk averaged magnetization measured by conventional magnetometry. The presented results fill the gap between the numerous studies performed on randomly oriented ε-Fe2O3 nanoparticles and much less frequent investigations of epitaxial epsilon ferrite films with lattice orientation fixed by the substrate.

3.
Adv Mater ; 32(34): e2002525, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32666564

RESUMO

Mechanically exfoliated 2D hexagonal boron nitride (h-BN) is currently the preferred dielectric material to interact with graphene and 2D transition metal dichalcogenides in nanoelectronic devices, as they form a clean van der Waals interface. However, h-BN has a low dielectric constant (≈3.9), which in ultrascaled devices results in high leakage current and premature dielectric breakdown. Furthermore, the synthesis of h-BN using scalable methods, such as chemical vapor deposition, requires very high temperatures (>900 °C) , and the resulting h-BN stacks contain abundant few-atoms-wide amorphous regions that decrease its homogeneity and dielectric strength. Here it is shown that ultrathin calcium fluoride (CaF2 ) ionic crystals could be an excellent solution to mitigate these problems. By applying >3000 ramped voltage stresses and several current maps at different locations of the samples via conductive atomic force microscopy, it is statistically demonstrated that ultrathin CaF2 shows much better dielectric performance (i.e., homogeneity, leakage current, and dielectric strength) than SiO2 , TiO2 , and h-BN. The main reason behind this behavior is that the cubic crystalline structure of CaF2 is continuous and free of defects over large regions, which prevents the formation of electrically weak spots.

4.
Sci Technol Adv Mater ; 18(1): 351-363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685003

RESUMO

Thin (4-20 nm) yttrium iron garnet (Y3Fe5O12, YIG) layers have been grown on gadolinium gallium garnet (Gd3Ga5O12, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner-Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe3+ sublattices were studied by XMCD.

5.
J Nanosci Nanotechnol ; 11(4): 2990-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21776666

RESUMO

Surface X-ray diffraction was applied to study structure of the fluorite-silicon interface forming upon epitaxial growth of CaF2 on Si(001) surface kept at 750 degrees C. Samples with CaF2 coverage of 1.5-4 (110)-monolayers were grown and in-situ characterized using synchrotron radiation. The 3 x 1-like surface reconstruction was observed in agreement with the previous studies by electron diffraction. Interestingly, a well pronounced splitting of the fractional x 1/3 reflections was revealed. This splitting was ascribed to the effect of antiphase domain boundaries in the row-like structure of the interface layer. The in-plane integrated intensities were used to reconstruct two-dimensional atomic structure of the high-temperature CaF2/Si(001) interface.


Assuntos
Fluoreto de Cálcio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Difração de Raios X/métodos , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...