Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400745, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804826

RESUMO

Producing heterostructures of cesium lead halide perovskites and metal-chalcogenides in the form of colloidal nanocrystals can improve their optical features and stability, and also govern the recombination of charge carriers. Herein, the synthesis of red-emitting CsPbI3/ZnSe nanoheterostructures is reported via an in situ hot injection method, which provides the crystallization conditions for both components, subsequently leading to heteroepitaxial growth. Steady-state absorption and photoluminescence studies alongside X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analysis evidence on a type-I band alignment for CsPbI3/ZnSe nanoheterostructures, which exhibit photoluminescence quantum yield of 96% due to the effective passivation of surface defects, and an enhancement in carrier lifetime. Furthermore, the heterostructure growth of ZnSe domains leads to significant improvement in the stability of the CsPbI3 nanocrystals under ambient conditions and against thermal and UV irradiation stress.

2.
Nanoscale ; 16(18): 9011-9020, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38623897

RESUMO

Nonlinear absorption of metal-halide perovskite nanocrystals (NCs) makes them an ideal candidate for applications which require multiphoton-excited photoluminescence. By doping perovskite NCs with lanthanides, their emission can be extended into the near-infrared (NIR) spectral region. We demonstrate how the combination of Yb3+ doping and bandgap engineering of cesium lead halide perovskite NCs performed by anion exchange (from Cl- to Br-) leads to efficient and tunable emitters that operate under two-photon excitation in the NIR spectral region. By optimizing the anion composition, Yb3+-doped CsPbClxBr3-x NCs exhibited high values of two-photon absorption cross-section reaching 2.3 × 105 GM, and displayed dual-band emission located both in the visible (407-493 nm) and NIR (985 nm). With a view of practical applications of bio-visualisation in the NIR spectral range, these NCs were embedded into silica microspheres which were further wrapped with amphiphilic polymer shells to ensure their water-compatibility. The resulting microspheres with embedded NCs could be easily dispersed in both toluene and water, while still exhibiting a dual-band emission in visible and NIR under both one- and two-photon excitation conditions.

3.
Nano Lett ; 24(11): 3347-3354, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451030

RESUMO

Understanding the photosensitization mechanisms in Yb3+-doped perovskite nanocrystals is crucial for developing their anticipated photonic applications. Here, we address this question by investigating near-infrared photoluminescence of Yb3+-doped mixed-halide CsPbClxBr3-x nanocrystals as a function of temperature and revealing its strong dependence on the stoichiometry of the host perovskite matrix. To explain the observed experimental trends, we developed a theoretical model in which energy transfer from the perovskite matrix to Yb3+ ions occurs through intermediate trap states situated beneath the conduction band of the host. The developed model provides an excellent agreement with experimental results and is further validated through the measurements of emission saturation at high excitation powers and near-infrared photoluminescence quantum yield as a function of the anion composition. Our findings establish trap-mediated energy transfer as a dominant photosensitization mechanism in Yb3+-doped CsPbClxBr3-x nanocrystals and open up new ways of engineering their optical properties for light-emitting and light-harvesting applications.

4.
Adv Mater ; : e2306518, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572367

RESUMO

A large volume, scalable synthesis procedure of HgTe quantum dots (QDs) capped initially with short-chain conductive ligands ensures ligand exchange-free and simple device fabrication. An effective n- or p-type self-doping of HgTe QDs is achieved by varying cation-anion ratio, as well as shifting the Fermi level position by introducing single- or double-cyclic thiol ligands, that is, 2-furanmethanethiol (FMT) or 2,5-dimercapto-3,4-thiadiasole (DMTD) in the synthesis. This allows for preserving the intact surface of the HgTe QDs, thus ensuring a one order of magnitude reduced surface trap density compared with HgTe subjected to solid-state ligand exchange. The charge carrier diffusion length can be extended from 50 to 90 nm when the device active area consists of a bi-layer of cation-rich HgTe QDs capped with DMTD and FMT, respectively. As a result, the responsivity under 1340 nm illumination is boosted to 1 AW-1 at zero bias and up to 40 AW-1 under -1 V bias at room temperature. Due to high noise current density, the specific detectivity of these photodetectors reaches up to 1010 Jones at room temperature and under an inert atmosphere. Meanwhile, high photoconductive gain ensures a rise in the external quantum efficiency of up to 1000% under reverse bias.

5.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240237

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscular disorder caused by mutations in the dystrophin gene. It leads to respiratory and cardiac failure and premature death at a young age. Although recent studies have greatly deepened the understanding of the primary and secondary pathogenetic mechanisms of DMD, an effective treatment remains elusive. In recent decades, stem cells have emerged as a novel therapeutic product for a variety of diseases. In this study, we investigated nonmyeloablative bone marrow cell (BMC) transplantation as a method of cell therapy for DMD in an mdx mouse model. By using BMC transplantation from GFP-positive mice, we confirmed that BMCs participate in the muscle restoration of mdx mice. We analyzed both syngeneic and allogeneic BMC transplantation under different conditions. Our data indicated that 3 Gy X-ray irradiation with subsequent BMC transplantation improved dystrophin synthesis and the structure of striated muscle fibers (SMFs) in mdx mice as well as decreasing the death rate of SMFs. In addition, we observed the normalization of neuromuscular junctions (NMJs) in mdx mice after nonmyeloablative BMC transplantation. In conclusion, we demonstrated that nonmyeloablative BMC transplantation could be considered a method for DMD treatment.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Camundongos Endogâmicos mdx , Transplante de Medula Óssea , Distrofia Muscular de Duchenne/genética , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Modelos Animais de Doenças
6.
Nanomaterials (Basel) ; 12(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500819

RESUMO

Doping the semiconductor nanocrystals is one of the most effective ways to obtain unique materials suitable for high-performance next-generation optoelectronic devices. In this study, we demonstrate a novel nanomaterial for the near-infrared spectral region. To do this, we developed a partial cation exchange reaction on the HgTe nanoplatelets, substituting Hg cations with Pb cations. Under the optimized reaction conditions and Pb precursor ratio, a photoluminescence band shifts to ~1100 nm with a quantum yield of 22%. Based on steady-state and transient optical spectroscopies, we suggest a model of photoexcitation relaxation in the HgTe:Pb nanoplatelets. We also demonstrate that the thin films of doped nanoplatelets possess superior electric properties compared to their pristine counterparts. These findings show that Pb-doped HgTe nanoplatelets are new perspective material for application in both light-emitting and light-detection devices operating in the near-infrared spectral region.

7.
Materials (Basel) ; 15(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36363269

RESUMO

Lead halide perovskite nanoplatelets (NPls) attract significant attention due to their exceptional and tunable optical properties. Doping is a versatile strategy for modifying and improving the optical properties of colloidal nanostructures. However, the protocols for B-site doping have been rarely reported for 2D perovskite NPls. In this work, we investigated the post-synthetic treatment of CsPbBr3 NPls with different Cd2+ sources. We show that the interplay between Cd2+ precursor, NPl concentrations, and ligands determines the kinetics of the doping process. Optimization of the treatment allows for the boosting of linear and nonlinear optical properties of CsPbBr3 NPls via doping or/and surface passivation. At a moderate doping level, both the photoluminescence quantum yield and two-photon absorption cross section increase dramatically. The developed protocols of post-synthetic treatment with Cd2+ facilitate further utilization of perovskite NPls in nonlinear optics, photonics, and lightning.

8.
Nanomaterials (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205727

RESUMO

PL intensity quenching and the PL lifetime reduction of fluorophores located close to graphene derivatives are generally explained by charge and energy transfer processes. Analyzing the PL from PbS QDs in rGO/QD systems, we observed a substantial reduction in average PL lifetimes with an increase in rGO content that cannot be interpreted solely by these two processes. To explain the PL lifetime dependence on the rGO/QD component ratio, we propose a model based on the Auger recombination of excitations involving excess holes left in the QDs after the charge transfer process. To validate the model, we conducted additional experiments involving the external engineering of free charge carriers, which confirmed the role of excess holes as the main QD PL quenching source. A mathematical simulation of the model demonstrated that the energy transfer between neighboring QDs must also be considered to explain the experimental data carefully. Together, Auger recombination and energy transfer simulation offers us an excellent fit for the average PL lifetime dependence on the component ratio of the rGO/QD system.

9.
J Phys Chem Lett ; 11(9): 3332-3338, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32283027

RESUMO

The ability of light manipulation at a sub-wavelength scale of metal halide perovskite-based nanostructures through nanophotonic design were employed for advanced optical and optoelectronic applications. While these nanostructures could be efficiently tuned in the visible spectral range, their operation at infrared wavelengths is still challenging. Herein, we illustrate that islandlike films of lead-free CH3NH3SnI3 can generate strong and tunable Mie-type resonances in the near-infrared spectral range. Two critical factors contribute to the Mie resonance properties-the microscale geometry is crucial for the initiation of Mie resonances in the particles, while the concentration of free holes formed via the oxidation of Sn2+ to Sn4+ modulates the spectral position of Mie resonances. Moreover, coupling the Mie resonances to the photoluminescence peak wavelength results in the enhancement of the photoluminescence intensity. This study offers a platform for the implementation of optically resonant perovskite nanostructures as tunable light emitters for infrared photonics and optoelectronics.

10.
Nanotechnology ; 30(40): 405206, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31247612

RESUMO

Nanostructured luminescent materials based on perovskite nanocrystals (p-NCs) are attractive since their optical properties can be tuned in a wide spectral range with high luminescence quantum yields and lifetimes, however, they lack stability. In this work, the optical properties of highly luminescent colloidal p-NCs (CsPbX3, where X = Cl/Br, Br, I) embedded in porous opal matrices are presented. It is shown that the photoluminescence of the p-NCs embedded into opal matrices possess increased longtime stability of its spectral and kinetic parameters under ambient conditions. LEDs based on the developed materials show pure color p-NC emission with stability of its parameters. The results of this work may expand the knowledge of interactions between luminescent nanoparticles within multicomponent nanostructured materials for further photonic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...