Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 25(12): 2047-2052, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36944352

RESUMO

A straightforward and scalable approach to a previously unreported class of cyclic hypervalent Br(III) species capitalizes on the anodic oxidation of aryl bromide to dimeric benzbromoxole that serves as a versatile platform to access a range of structurally diverse Br(III) congeners such as acetoxy-, alkoxy-, and ethynyl-λ3-bromanes as well as diaryl-λ3-bromanes. The synthetic utility of dimeric λ3-bromane is exemplified by photoinduced Minisci-type heteroarylation reactions and benzylic oxidation.

2.
Chemistry ; 28(42): e202200974, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35510557

RESUMO

Hypervalent bromine(III) reagents possess a higher electrophilicity and a stronger oxidizing power compared to their iodine(III) counterparts. Despite the superior reactivity, bromine(III) reagents have a reputation of hard-to-control and difficult-to-synthesize compounds. This is partly due to their low stability, and partly because their synthesis typically relies on the use of the toxic and highly reactive BrF3 as a precursor. Recently, we proposed chelation-stabilized hypervalent bromine(III) compounds as a possible solution to both problems. First, they can be conveniently prepared by electro-oxidation of the corresponding bromoarenes. Second, the chelation endows bromine(III) species with increased stability while retaining sufficient reactivity, comparable to that of iodine(III) counterparts. Finally, their intrinsic reactivity can be unlocked in the presence of acids. Herein, an in-depth mechanistic study of both the electrochemical generation and the reactivity of the bromine(III) compounds is disclosed, with implications for known applications and future developments in the field.

3.
Angew Chem Int Ed Engl ; 60(29): 15832-15837, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33894098

RESUMO

In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge gap is mainly attributed to the difficult-to-control reactivity of λ3 -bromanes as well as to their challenging preparation from the highly toxic and corrosive BrF3 precursor. In this context, we present a straightforward and scalable approach to chelation-stabilized λ3 -bromanes by anodic oxidation of parent aryl bromides possessing two coordinating hexafluoro-2-hydroxypropanyl substituents. A series of para-substituted λ3 -bromanes with remarkably high redox potentials spanning a range from 1.86 V to 2.60 V vs. Ag/AgNO3 was synthesized by the electrochemical method. We demonstrate that the intrinsic reactivity of the bench-stable bromine(III) species can be unlocked by addition of a Lewis or a Brønsted acid. The synthetic utility of the λ3 -bromane activation is exemplified by oxidative C-C, C-N, and C-O bond forming reactions.

4.
J Org Chem ; 81(2): 371-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26700627

RESUMO

Cu-catalyzed reaction of phenols with electron-rich arene or heteroarene ligands of unsymmetrical diaryl-λ(3)-iodanes is a key step in the developed one-pot two-step method for intermolecular para-selective C-H aryloxylation of heteroarenes and arenes.

5.
J Am Chem Soc ; 136(19): 6920-8, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24739120

RESUMO

A one-pot two-step method for intermolecular C-H amination of electron-rich heteroarenes and arenes has been developed. The approach is based on a room-temperature copper-catalyzed regioselective reaction of the in situ formed unsymmetrical (hetero)aryl-λ(3)-iodanes with a wide range of primary and secondary aliphatic amines and anilines.

6.
J Am Chem Soc ; 134(37): 15436-42, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22913396

RESUMO

A C-H bond of electron-rich heterocycles is transformed into a C-N bond in a reaction sequence comprising the formation of heteroaryl(phenyl)iodonium azides and their in situ regioselective fragmentation to heteroaryl azides. A Cu(I) catalyst ensures complete regiocontrol in the fragmentation step and catalyzes the subsequent 1,3-dipolar cycloaddition of the formed azido heterocycles with acetylenes. The heteroaryl azides can also be conveniently reduced to heteroarylamines by aqueous ammonium sulfide. The overall C-H to C-N transformation is a mild and operationally simple one-pot sequential multistep process.

7.
Org Lett ; 13(16): 4324-7, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21774523

RESUMO

A mild, room-temperature Pd-catalyzed acetoxylation of pyrroles with phenyliodonium acetate is described. The acetoxylation was found to proceed via the initial formation of pyrrolyl(phenyl)iodonium acetates, which were converted to acetoxypyrroles in the presence of Pd(OAc)(2). The acetoxylation could also be carried out as a one-pot sequential procedure without the isolation of the intermediate iodonium salts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...