Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1438: 45-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37845438

RESUMO

There is strong evidence that augmentation of the brain's waste disposal system via stimulation of the meningeal lymphatics might be a promising therapeutic target for preventing neurological diseases. In our previous studies, we demonstrated activation of the brain's waste disposal system using transcranial photostimulation (PS) with a laser 1267 nm, which stimulates the direct generation of singlet oxygen in the brain tissues. Here we investigate the mechanisms underlying this phenomenon. Our results clearly demonstrate that PS-mediated stimulation of the brain's waste disposal system is accompanied by activation of lymphatic contractility associated with subsequent intracellular production of the reactive oxygen species and the nitric oxide underlying lymphatic relaxation. Thus, PS stimulates the brain's waste disposal system by influencing the mechanisms of regulation of lymphatic pumping.


Assuntos
Encéfalo , Oxigênio Singlete , Encéfalo/fisiologia , Meninges , Óxido Nítrico , Espécies Reativas de Oxigênio
2.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762000

RESUMO

Over sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode. This wavelength, highly absorbed by oxygen, is capable of turning triplet oxygen to singlet form. Applying 1267 nm laser irradiation for a 4 week course with a total dose of 12.7 kJ/cm2 firmly suppresses GBM growth and increases survival rate from 34% to 64%, presumably via LT-activated apoptosis, inhibition of the proliferation of tumor cells, a reduction in intracranial pressure and stimulation of the lymphatic drainage and clearing functions. PS-free-LT is a promising breakthrough technology in non- or minimally invasive therapy for superficial GBMs in infants as well as in adult patients with high photosensitivity or an allergic reaction to PSs.

3.
Adv Exp Med Biol ; 1395: 53-57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527613

RESUMO

The blood-brain barrier (BBB) poses a significant challenge for drug delivery to the brain. Therefore, the development of safe methods for an effective delivery of medications to the brain can be a revolutionary step in overcoming this limitation. Using a quantum-dot-based 1267 nm laser (photosensitiser-free generation of singlet oxygen), we clearly show the photostimulation of lymphatic delivery of bevacizumab (BMZ) to the brain tissues and the meninges. These pilot findings open promising perspectives for photomodulation of a lymphatic brain drug delivery bypassing the BBB, and potentially enabling a breakthrough strategy in therapy of glioma using BMZ and other chemotherapy drugs.


Assuntos
Vasos Linfáticos , Oxigênio Singlete , Bevacizumab , Encéfalo , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...