Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4124, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511518

RESUMO

While laser-printed metals do not tend to match the mechanical properties and thermal stability of conventionally-processed metals, incorporating and dispersing nanoparticles in them should enhance their performance. However, this remains difficult to do during laser additive manufacturing. Here, we show that aluminum reinforced by nanoparticles can be deposited layer-by-layer via laser melting of nanocomposite powders, which enhance the laser absorption by almost one order of magnitude compared to pure aluminum powders. The laser printed nanocomposite delivers a yield strength of up to 1000 MPa, plasticity over 10%, and Young's modulus of approximately 200 GPa, offering one of the highest specific Young's modulus and specific yield strengths among structural metals, as well as an improved specific strength and thermal stability up to 400 °C compared to other aluminum-based materials. The improved performance is attributed to a high density of well-dispersed nanoparticles, strong interfacial bonding between nanoparticles and Al matrix, and ultrafine grain sizes.

2.
Sci Adv ; 5(8): eaaw2398, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31467973

RESUMO

Cooling, nucleation, and phase growth are ubiquitous processes in nature. Effective control of nucleation and phase growth is of significance to yield refined microstructures with enhanced performance for materials. Recent studies reveal that ultrafine grained (UFG)/nanocrystalline metals exhibit extraordinary properties. However, conventional microstructure refinement methods, such as fast cooling and inoculation, have reached certain fundamental limits. It has been considered impossible to fabricate bulk UFG/nanocrystalline metals via slow cooling. Here, we report a new discovery that nanoparticles can refine metal grains to ultrafine/nanoscale by instilling a continuous nucleation and growth control mechanism during slow cooling. The bulk UFG/nanocrystalline metal with nanoparticles also reveals an unprecedented thermal stability. This method overcomes the grain refinement limits and may be extended to any other processes that involve cooling, nucleation, and phase growth for widespread applications.

3.
Sci Rep ; 9(1): 10671, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337848

RESUMO

Nano-treating is a novel concept wherein a low percentage of nanoparticles is used for microstructural control and property tuning in metals and alloys. The nano-treating of AA7075 was investigated to control its microstructure and improve its structural stability for high performance. After treatment with TiC nanoparticles, the grains were significantly refined from coarse dendrites of hundreds of micrometers to fine equiaxial ones smaller than 20 µm. After T6 heat treatment, the grains, with an average size of 18.5 µm, remained almost unchanged, demonstrating an excellent thermal stability. It was found that besides of growth restriction factor by pinning behavior on grain boundries, TiC nanoparticles served as both an effective nucleation agent for primary grains and an effective secondary phase modifier in AA7075. Furthermore, the mechanical properties of nano-treated AA7075 were improved over those of the pure alloy. Thus, nano-treating provides a new method to enhance the performance of aluminum alloys for numerous applications.

4.
Nat Commun ; 10(1): 98, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626876

RESUMO

Lightweight materials are of paramount importance to reduce energy consumption and emissions in today's society. For materials to qualify for widespread use in lightweight structural assembly, they must be weldable or joinable, which has been a long-standing issue for high strength aluminum alloys, such as 7075 (AA7075) due to their hot crack susceptibility during fusion welding. Here, we show that AA7075 can be safely arc welded without hot cracks by introducing nanoparticle-enabled phase control during welding. Joints welded with an AA7075 filler rod containing TiC nanoparticles not only exhibit fine globular grains and a modified secondary phase, both which intrinsically eliminate the materials hot crack susceptibility, but moreover show exceptional tensile strength in both as-welded and post-weld heat-treated conditions. This rather simple twist to the filler material of a fusion weld could be generally applied to a wide range of hot crack susceptible materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...