Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(6): pgae209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881844

RESUMO

The discourse surrounding the structural organization of mutualistic interactions mostly revolves around modularity and nestedness. The former is known to enhance the stability of communities, while the latter is related to their feasibility, albeit compromising the stability. However, it has recently been shown that the joint emergence of these structures poses challenges that can eventually lead to limitations in the dynamic properties of mutualistic communities. We hypothesize that considering compound arrangements-modules with internal nested organization-can offer valuable insights in this debate. We analyze the temporal structural dynamics of 20 plant-pollinator interaction networks and observe large structural variability throughout the year. Compound structures are particularly prevalent during the peak of the pollination season, often coexisting with nested and modular arrangements in varying degrees. Motivated by these empirical findings, we synthetically investigate the dynamics of the structural patterns across two control parameters-community size and connectance levels-mimicking the progression of the pollination season. Our analysis reveals contrasting impacts on the stability and feasibility of these mutualistic communities. We characterize the consistent relationship between network structure and stability, which follows a monotonic pattern. But, in terms of feasibility, we observe nonlinear relationships. Compound structures exhibit a favorable balance between stability and feasibility, particularly in mid-sized ecological communities, suggesting they may effectively navigate the simultaneous requirements of stability and feasibility. These findings may indicate that the assembly process of mutualistic communities is driven by a delicate balance among multiple properties, rather than the dominance of a single one.

2.
Netw Neurosci ; 6(3): 916-933, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36605412

RESUMO

In recent years, research on network analysis applied to MRI data has advanced significantly. However, the majority of the studies are limited to single networks obtained from resting-state fMRI, diffusion MRI, or gray matter probability maps derived from T1 images. Although a limited number of previous studies have combined two of these networks, none have introduced a framework to combine morphological, structural, and functional brain connectivity networks. The aim of this study was to combine the morphological, structural, and functional information, thus defining a new multilayer network perspective. This has proved advantageous when jointly analyzing multiple types of relational data from the same objects simultaneously using graph- mining techniques. The main contribution of this research is the design, development, and validation of a framework that merges these three layers of information into one multilayer network that links and relates the integrity of white matter connections with gray matter probability maps and resting-state fMRI. To validate our framework, several metrics from graph theory are expanded and adapted to our specific domain characteristics. This proof of concept was applied to a cohort of people with multiple sclerosis, and results show that several brain regions with a synchronized connectivity deterioration could be identified.

3.
Nat Commun ; 12(1): 1941, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782408

RESUMO

Human cognitive abilities are limited resources. Today, in the age of cheap information-cheap to produce, to manipulate, to disseminate-this cognitive bottleneck translates into hypercompetition for rewarding outcomes among actors. These incentives push actors to mutualistically interact with specific memes, seeking the virality of their messages. In turn, memes' chances to persist and spread are subject to changes in the communication environment. In spite of all this complexity, here we show that the underlying architecture of empirical actor-meme information ecosystems evolves into recurring emergent patterns. We then propose an ecology-inspired modelling framework, bringing to light the precise mechanisms causing the observed flexible structural reorganisation. The model predicts-and the data confirm-that users' struggle for visibility induces a re-equilibration of the network's mesoscale towards self-similar nested arrangements. Our final microscale insights suggest that flexibility at the structural level is not mirrored at the dynamical one.

4.
Sci Rep ; 9(1): 13890, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554884

RESUMO

The development Open Source Software fundamentally depends on the participation and commitment of volunteer developers to progress on a particular task. Several works have presented strategies to increase the on-boarding and engagement of new contributors, but little is known on how these diverse groups of developers self-organise to work together. To understand this, one must consider that, on one hand, platforms like GitHub provide a virtually unlimited development framework: any number of actors can potentially join to contribute in a decentralised, distributed, remote, and asynchronous manner. On the other, however, it seems reasonable that some sort of hierarchy and division of labour must be in place to meet human biological and cognitive limits, and also to achieve some level of efficiency. These latter features (hierarchy and division of labour) should translate into detectable structural arrangements when projects are represented as developer-file bipartite networks. Thus, in this paper we analyse a set of popular open source projects from GitHub, placing the accent on three key properties: nestedness, modularity and in-block nestedness -which typify the emergence of heterogeneities among contributors, the emergence of subgroups of developers working on specific subgroups of files, and a mixture of the two previous, respectively. These analyses show that indeed projects evolve into internally organised blocks. Furthermore, the distribution of sizes of such blocks is bounded, connecting our results to the celebrated Dunbar number both in off- and on-line environments. Our conclusions create a link between bio-cognitive constraints, group formation and online working environments, opening up a rich scenario for future research on (online) work team assembly (e.g. size, composition, and formation). From a complex network perspective, our results pave the way for the study of time-resolved datasets, and the design of suitable models that can mimic the growth and evolution of OSS projects.

5.
Phys Rev E ; 97(6-1): 062302, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011537

RESUMO

As new instances of nested organization-beyond ecological networks-are discovered, scholars are debating the coexistence of two apparently incompatible macroscale architectures: nestedness and modularity. The discussion is far from being solved, mainly for two reasons. First, nestedness and modularity appear to emerge from two contradictory dynamics, cooperation and competition. Second, existing methods to assess the presence of nestedness and modularity are flawed when it comes to the evaluation of concurrently nested and modular structures. In this work, we tackle the latter problem, presenting the concept of in-block nestedness, a structural property determining to what extent a network is composed of blocks whose internal connectivity exhibits nestedness. We then put forward a set of optimization methods that allow us to identify such organization successfully, in synthetic and in a large number of real networks. These findings challenge our understanding of the topology of ecological and social systems, calling for new models to explain how such patterns emerge.

6.
R Soc Open Sci ; 3(10): 160098, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27853535

RESUMO

The rapid growth of population in urban areas is jeopardizing the mobility and air quality worldwide. One of the most notable problems arising is that of traffic congestion. With the advent of technologies able to sense real-time data about cities, and its public distribution for analysis, we are in place to forecast scenarios valuable for improvement and control. Here, we propose an idealized model, based on the critical phenomena arising in complex networks, that allows to analytically predict congestion hotspots in urban environments. Results on real cities' road networks, considering, in some experiments, real traffic data, show that the proposed model is capable of identifying susceptible junctions that might become hotspots if mobility demand increases.

7.
Phys Rev Lett ; 116(10): 108701, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015514

RESUMO

Multiplex networks are representations of multilayer interconnected complex networks where the nodes are the same at every layer. They turn out to be good abstractions of the intricate connectivity of multimodal transportation networks, among other types of complex systems. One of the most important critical phenomena arising in such networks is the emergence of congestion in transportation flows. Here, we prove analytically that the structure of multiplex networks can induce congestion for flows that otherwise would be decongested if the individual layers were not interconnected. We provide explicit equations for the onset of congestion and approximations that allow us to compute this onset from individual descriptors of the individual layers. The observed cooperative phenomenon is reminiscent of Braess' paradox in which adding extra capacity to a network when the moving entities selfishly choose their route can in some cases reduce overall performance. Similarly, in the multiplex structure, the efficiency in transportation can unbalance the transportation loads resulting in unexpected congestion.

8.
Nat Commun ; 6: 6868, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25904405

RESUMO

The determination of the most central agents in complex networks is important because they are responsible for a faster propagation of information, epidemics, failures and congestion, among others. A challenging problem is to identify them in networked systems characterized by different types of interactions, forming interconnected multilayer networks. Here we describe a mathematical framework that allows us to calculate centrality in such networks and rank nodes accordingly, finding the ones that play the most central roles in the cohesion of the whole structure, bridging together different types of relations. These nodes are the most versatile in the multilayer network. We investigate empirical interconnected multilayer networks and show that the approaches based on aggregating--or neglecting--the multilayer structure lead to a wrong identification of the most versatile nodes, overestimating the importance of more marginal agents and demonstrating the power of versatility in predicting their role in diffusive and congestion processes.

9.
Proc Natl Acad Sci U S A ; 111(23): 8351-6, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912174

RESUMO

Assessing the navigability of interconnected networks (transporting information, people, or goods) under eventual random failures is of utmost importance to design and protect critical infrastructures. Random walks are a good proxy to determine this navigability, specifically the coverage time of random walks, which is a measure of the dynamical functionality of the network. Here, we introduce the theoretical tools required to describe random walks in interconnected networks accounting for structure and dynamics inherent to real systems. We develop an analytical approach for the covering time of random walks in interconnected networks and compare it with extensive Monte Carlo simulations. Generally speaking, interconnected networks are more resilient to random failures than their individual layers per se, and we are able to quantify this effect. As an application--which we illustrate by considering the public transport of London--we show how the efficiency in exploring the multiplex critically depends on layers' topology, interconnection strengths, and walk strategy. Our findings are corroborated by data-driven simulations, where the empirical distribution of check-ins and checks-out is considered and passengers travel along fastest paths in a network affected by real disruptions. These findings are fundamental for further development of searching and navigability strategies in real interconnected systems.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Disseminação de Informação , Modelos Teóricos , Redes Comunitárias , Simulação por Computador , Humanos , Londres , Meios de Transporte
10.
J Biomed Inform ; 45(1): 141-55, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22056693

RESUMO

The estimation of the semantic similarity between terms provides a valuable tool to enable the understanding of textual resources. Many semantic similarity computation paradigms have been proposed both as general-purpose solutions or framed in concrete fields such as biomedicine. In particular, ontology-based approaches have been very successful due to their efficiency, scalability, lack of constraints and thanks to the availability of large and consensus ontologies (like WordNet or those in the UMLS). These measures, however, are hampered by the fact that only one ontology is exploited and, hence, their recall depends on the ontological detail and coverage. In recent years, some authors have extended some of the existing methodologies to support multiple ontologies. The problem of integrating heterogeneous knowledge sources is tackled by means of simple terminological matchings between ontological concepts. In this paper, we aim to improve these methods by analysing the similarity between the modelled taxonomical knowledge and the structure of different ontologies. As a result, we are able to better discover the commonalities between different ontologies and hence, improve the accuracy of the similarity estimation. Two methods are proposed to tackle this task. They have been evaluated and compared with related works by means of several widely-used benchmarks of biomedical terms using two standard ontologies (WordNet and MeSH). Results show that our methods correlate better, compared to related works, with the similarity assessments provided by experts in biomedicine.


Assuntos
Algoritmos , Informática Médica/métodos , Semântica , Medical Subject Headings , Unified Medical Language System
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...