Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 819: 152013, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852252

RESUMO

Saltwater extraction in coastal aquifers generates a negative hydraulic barrier that prevents marine intrusion and produces a general freshening landward from this barrier. In the Andarax delta aquifer, SE Spain, two instances of saltwater extraction were performed and their effect on the aquifer hydrochemistry was studied. 14C groundwater dating, together with chemical analysis, reflects the presence of waters with different infiltration ages. Old marine groundwater (~10 ky) must be the remains of marine intrusion generated during the Holocene transgression at the same time the delta was formed. The freshening induced by the saltwater extraction triggers cation exchange between the aquifer substratum and groundwater. Unlike what is described in other examples of cation exchange in coastal aquifers, in the Andarax delta the freshening causes an exchange between Mg, which is released into the groundwater, and Na, which is held in the clay mineral structural unit. This process is reverted the moment the hydraulic barrier stops acting. Short saltwater pumping-stopping cycles generate fast inversions in this exchange chemical reaction. At the same time, a clear excess of Ca ion can be seen in all the groundwater samples. This excess is attributed to the release of this ion resulting from the overall marine intrusion in this area during the Holocene transgression. Contrasting what occurs with the Na-Mg exchange, the Na-Ca exchange process is more long-lasting in time.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Cátions , Monitoramento Ambiental/métodos , Água Subterrânea/química , Água do Mar/química , Espanha
2.
Sci Total Environ ; 732: 139249, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32438185

RESUMO

This study tests for the first time the long-term effects of pumping saline groundwater (SGW) as feed for a desalination plant on a coastal aquifer. Field measurements combined with 3D modeling of the hydrological conditions were conducted to examine the effects of SGW pumping on the aquifer system. The plant is next to the city of Almeria (South East Spain) and has been operating since 2006. It uses multiple beach wells along the shore to draw SGW from beneath the fresh-saline water interface (FSI) of the Andarax coastal aquifer. The long-term impact of the intensive pumping on the aquifer was assessed by electrical conductivity profiles in three observation wells during 12 years of pumping. The FSI deepened with continuous pumping, reaching a decrease of ~50 m in the observation well closest to the pumping wells. A calibrated three-dimensional numerical model of the Andarax aquifer replicates the freshening of the aquifer due to the continuous pumping, resulting in a salinity decrease of ~16% in the vicinity of the wells. The salinity decrease stabilizes at 17%, and the model predicts no further significant decrease in salinity for additional 20 years. Submarine groundwater discharge is lowered due to the SGW pumping and ~19,000,000 m3 of freshwater has not lost to the sea during the 12 years of pumping with a rate of ~1,100,000 m3 yr-1 after 6 years of pumping. After pumping cessation, hydrostatic equilibrium would take about 20 years to recover. This work presents the complex dynamics of the FSI due to the SGW pumping for desalination in the first real long-term scenario. It shows by combining field work and numerical modeling, a significant freshening of the aquifer by pumping SGW, emphasizing an additional advantage and the effectiveness of this use as a negative hydraulic barrier against seawater intrusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...