Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acad Radiol ; 28(4): 457-466, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32331966

RESUMO

RATIONALE AND OBJECTIVES: Hydrocephalus (HC) is caused by accumulating cerebrospinal fluid resulting in enlarged ventricles and neurological symptoms. HC can be treated via a shunt in a subset of patients; identifying which individuals will respond through noninvasive imaging would avoid complications from unsuccessful treatments. This preliminary work is a longitudinal study applying MR Elastography (MRE) to HC patients with a focus on normal pressure hydrocephalus (NPH). MATERIALS AND METHODS: Twenty-two ventriculomegaly patients were imaged and subsequently received a lumbar drain placement for cerebrospinal fluid (CSF) drainage. NPH lumbar drain responders and NPH syndrome nonresponders were categorized by clinical presentation. Displacement images were acquired using intrinsic activation (IA) MRE and poroelastic inversion recovered shear stiffness and hydraulic conductivity values. A stable IA-MRE inversion protocol was developed to produce unique solutions for both recovered properties, independent of initial estimates. RESULTS: Property images showed significantly increased shear modulus (p = 0.003 in periventricular region, p = 0.005 in remaining cerebral tissue) and hydraulic conductivity (p = 0.04 in periventricular region) in ventriculomegaly patients compared to healthy volunteers. Baseline MRE imaging did not detect significant differences between NPH lumbar drain responders and NPH syndrome nonresponders; however, MRE time series analysis demonstrated consistent trends in average poroelastic shear modulus values over the course of the lumbar drain process in responders (initial increase, followed by a later decrease) which did not occur in nonresponders. CONCLUSION: These findings are indicative of acute mechanical changes in the brain resulting from CSF drainage in NPH patients.


Assuntos
Técnicas de Imagem por Elasticidade , Hidrocefalia de Pressão Normal , Encéfalo/diagnóstico por imagem , Drenagem , Humanos , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Hidrocefalia de Pressão Normal/cirurgia , Estudos Longitudinais , Imageamento por Ressonância Magnética
2.
IEEE Trans Med Imaging ; 39(5): 1775-1784, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31825863

RESUMO

Magnetic resonance elastography (MRE) has been developed to noninvasively reconstruct mechanical properties for tissue and tissue-like materials over a frequency range of 10 ~200 Hz. In this work, low frequency (1~1.5 Hz) MRE activations were employed to estimate mechanical property distributions of simulated data and experimental phantoms. Nonlinear inversion (NLI) MRE algorithms based on viscoelastic and poroelastic material models were used to solve the inverse problems and recover images of the shear modulus and hydraulic conductivity. Data from a simulated phantom containing an inclusion with property contrast was carried out to study the feasibility of our low frequency actuated approach. To verify the stability of NLI algorithms for low frequency actuation, different levels of synthetic noise were added to the displacement data. Spatial distributions and property values were recovered well for noise level less than 5%. For the presented experimental phantom reconstructions with regularizations, the computed storage moduli from viscoelastic and poroelastic MRE gave similar results. Contrast was detected between inclusions and background in recovered hydraulic conductivity images. Results and findings confirm the feasibility of future in vivo neuroimaging examinations using natural cerebrovascular pulsations at cardiac frequencies, which can eliminate specialized equipment for high frequency actuation.


Assuntos
Técnicas de Imagem por Elasticidade , Algoritmos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
3.
Phys Med Biol ; 64(7): 075006, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30808018

RESUMO

Intrinsic actuation MR elastography (IA-MRE) exploits natural pulsations of the brain as a motion source to estimate mechanical property maps. The low frequency motion of IA-MRE introduces new considerations for inversion algorithms relative to traditional external actuation MRE. Specifically, inertial forces become very small, which leaves low frequency viscoelastic inversions with a non-unique scalar multiplier. Biphasic poroelastic inversions include additional fluid-solid interaction forces to balance the elastic forces, which avoids the non-uniqueness. Analyzing the convergence behavior from different starting values using 1 Hz simulated data, IA-MRE data from a gelatin phantom and in vivo brain IA-MRE data reveal that higher frequency (50 Hz) viscoelastic inversion reaches the correct, unique solution regardless of initial property estimate; whereas, low frequency viscoelastic inversion recovers relative values of shear modulus. In the presence of measurement noise, the non-unique scalar multiplier is determined by the softest material reaching the prescribed lower bound on shear modulus. Poroelastic inversion produces a unique solution at both 50 Hz and 1 Hz; however, hydraulic conductivity must be known or accurately estimated in order to recover quantitatively accurate shear modulus maps at low frequency.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Humanos
4.
Phys Med Biol ; 64(6): 065010, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30695755

RESUMO

Intrinsic activation MR elastography (IA-MRE) is a novel technique which seeks to estimate brain mechanical properties non-invasively and without external mechanical drivers. The method eliminates actuation hardware and patient discomfort while capitalizing on the brain's intrinsic low frequency motion. This study explores low frequency actuation (1 Hz) MR elastography in phantoms and analyzes performance of non-linear inversion (NLI) of viscoelastic and poroelastic mechanical models as a framework for assessing clinical results from IA-MRE. We present results from four gelatin phantoms and report stiffness resolution of 6 mm (two measurement voxels) with a stiffness contrast ratio of 4.21 relative to the background and 9 mm (three measurement voxels) with a lower stiffness contrast ratio of near 1.77. Stiffness edge resolution was also evaluated using edge spread and line spread functions and yielded a stiffness edge response distance of 9 mm. The intraclass correlation coefficient was high (0.93) between mechanical testing and poroelastic estimates, although quantitative agreement was affected by model-data mismatch. Viscoelastic MRE at low frequencies has issues with non-uniqueness due to small inertial forces, and performed worse than poroelastic MRE in terms of inclusion detection and consistency with mechanical testing. These results present the first evaluation of MR elastography using displacement measurements from an actuation frequency less than 5 Hz and support the validity of brain IA-MRE to recover spatially resolved stiffness changes. They provide a baseline of performance in terms of standard metrics for future animal and human brain stiffness studies and analyses based on intrinsic motion.


Assuntos
Encéfalo/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Gelatina , Humanos , Razão Sinal-Ruído
5.
J Magn Reson ; 296: 112-120, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30241018

RESUMO

Magnetic Resonance Elastography (MRE) detects induced periodic motions in biological tissues allowing maps of tissue mechanical properties to be derived. In-vivo MRE is commonly performed at frequencies of 30-100 Hz using external actuation, however, using cerebro-vascular pulsation at 1 Hz as a form of intrinsic actuation (IA-MRE) eliminates the need for external motion sources and simplifies data acquisition. In this study a hydraulic actuation system was developed to drive 1 Hz motions in gelatin as a tool for investigating the performance limits of IA-MRE image reconstruction under controlled conditions. Quantitative flow (QFLOW) MR techniques were used to phase encode 1 Hz motions as a function of gradient direction using 3D or 4D acquisition; 4D acquisition was twice as fast and yielded comparable motion field and concomitant image reconstruction results provided the motion signal was sufficiently strong. Per voxel motion noise floor corresponded to a displacement amplitude of about 20-30 µm. Signal to noise ratio (SNR) was 94 ±â€¯17 for 3D and dropped to 69 ±â€¯10 for the faster 4D acquisition, but yielded octahedral shear stress and shear modulus maps of high quality that differed by only about 20% on average. QFLOW measurements in gel phantoms were improved significantly by adding Mn(II) to mimic relaxation rates found in brain. Overall, the hydraulic 1 Hz actuation system when coupled with 4D sequence acquisition produced a fast reliable approach for future IA-MRE phantom evaluation and contrast detail studies needed to benchmark imaging performance.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Algoritmos , Benchmarking , Encéfalo/diagnóstico por imagem , Gelatina , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Manganês/química , Movimento (Física) , Razão Sinal-Ruído
6.
Phys Med Biol ; 63(14): 145021, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29877194

RESUMO

This study evaluated non-linear inversion MRE (NLI-MRE) based on viscoelastic governing equations to determine its sensitivity to small, low contrast inclusions and interface changes in shear storage modulus and damping ratio. Reconstruction parameters identical to those used in recent in vivo MRE studies of mechanical property variations in small brain structures were applied. NLI-MRE was evaluated on four phantoms with contrast in stiffness and damping ratio. Image contrast to noise ratio was assessed as a function of inclusion diameter and property contrast, and edge and line spread functions were calculated as measures of imaging resolution. Phantoms were constructed from silicone, agar, and tofu materials. Reconstructed property estimates were compared with independent mechanical testing using dynamic mechanical analysis (DMA). The NLI-MRE technique detected inclusions as small as 8 mm with a stiffness contrast as low as 14%. Storage modulus images also showed an interface edge response distance of 11 mm. Damping ratio images distinguished inclusions with a diameter as small as 8 mm, and yielded an interface edge response distance of 10 mm. Property differences relative to DMA tests were in the 15%-20% range in most cases. In this study, NLI-MRE storage modulus estimates resolved the smallest inclusion with the lowest stiffness contrast, and spatial resolution of attenuation parameter images was quantified for the first time. These experiments and image quality metrics establish quantitative guidelines for the accuracy expected in vivo for MRE images of small brain structures, and provide a baseline for evaluating future improvements to the NLI-MRE pipeline.


Assuntos
Encéfalo/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Humanos
7.
PLoS One ; 13(12): e0209699, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596727

RESUMO

We recently identified three novel thioredoxin-like genes in the genome of the protozoan parasite Plasmodium that belong to the Phosducin-like family of proteins (PhLP). PhLPs are small cytosolic proteins hypothesized to function in G-protein signaling and protein folding. Although PhLPs are highly conserved in eukaryotes from yeast to mammals, only a few representatives have been experimentally characterized to date. In addition, while PhLPs contain a thioredoxin domain, they lack a CXXC motif, a strong indicator for redox activity, and it is unclear whether members of the PhLP family are enzymatically active. Here, we describe PbPhLP-3 as the first phosducin-like protein of a protozoan organism, Plasmodium berghei. Initial transcription analysis revealed continuous low-level expression of pbphlp-3 throughout the complex Plasmodium life cycle. Attempts to knockout pbphlp-3 in P. berghei did not yield live parasites, suggesting an essential role for the gene in Plasmodium. We cloned, expressed and purified PbPhLP-3 and determined that the recombinant protein is redox active in vitro in a thioredoxin-coupled redox assay. It also has the capacity to reduce the organic compound tert-Butyl hydroperoxide (TBHP) in vitro, albeit at low efficiency. Sequence analysis, structural modeling, and site-directed mutagenesis revealed a conserved cysteine in the thioredoxin domain to be the redox active residue. Lastly, we provide evidence that recombinant human PhLP-3 exhibits redox activity similar to that of PbPhLP-3 and suggest that redox activity may be conserved in PhLP-3 homologs of other species. Our data provide new insight into the function of PhLP-3, which is hypothesized to act as co-chaperones in the folding and regulation of cytoskeletal proteins. We discuss the potential implications of PhLP-3 as a thioredoxin-target protein and possible links between the cellular redox network and the eukaryotic protein folding machinery.


Assuntos
Evolução Biológica , Oxirredução , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Evolução Molecular , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Plasmodium/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Relação Estrutura-Atividade
8.
Front Chem ; 5: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674689

RESUMO

The substrate specificity of enzymes is crucial to control the fate of metabolites to different pathways. However, there is growing evidence that many enzymes can catalyze alternative reactions. This promiscuous behavior has important implications in protein evolution and the acquisition of new functions. The question is how the undesirable outcomes of in vivo promiscuity can be prevented. ADP-glucose pyrophosphorylase from Escherichia coli is an example of an enzyme that needs to select the correct substrate from a broad spectrum of alternatives. This selection will guide the flow of carbohydrate metabolism toward the synthesis of reserve polysaccharides. Here, we show that the allosteric activator fructose-1,6-bisphosphate plays a role in such selection by increasing the catalytic efficiency of the enzyme toward the use of ATP rather than other nucleotides. In the presence of fructose-1,6-bisphosphate, the kcat/S0.5 for ATP was near ~600-fold higher that other nucleotides, whereas in the absence of activator was only ~3-fold higher. We propose that the allosteric regulation of certain enzymes is an evolutionary mechanism of adaptation for the selection of specific substrates.

9.
PLoS One ; 12(6): e0178521, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28586393

RESUMO

A numerical framework for interstitial fluid pressure imaging (IFPI) in biphasic materials is investigated based on three-dimensional nonlinear finite element poroelastic inversion. The objective is to reconstruct the time-harmonic pore-pressure field from tissue excitation in addition to the elastic parameters commonly associated with magnetic resonance elastography (MRE). The unknown pressure boundary conditions (PBCs) are estimated using the available full-volume displacement data from MRE. A subzone-based nonlinear inversion (NLI) technique is then used to update mechanical and hydrodynamical properties, given the appropriate subzone PBCs, by solving a pressure forward problem (PFP). The algorithm was evaluated on a single-inclusion phantom in which the elastic property and hydraulic conductivity images were recovered. Pressure field and material property estimates had spatial distributions reflecting their true counterparts in the phantom geometry with RMS errors around 20% for cases with 5% noise, but degraded significantly in both spatial distribution and property values for noise levels > 10%. When both shear moduli and hydraulic conductivity were estimated along with the pressure field, property value error rates were as high as 58%, 85% and 32% for the three quantities, respectively, and their spatial distributions were more distorted. Opportunities for improving the algorithm are discussed.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Líquido Extracelular/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Técnicas de Imagem por Elasticidade/métodos , Análise de Elementos Finitos , Humanos , Imagens de Fantasmas , Pressão
10.
IEEE Trans Med Imaging ; 36(1): 236-250, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27608454

RESUMO

We describe an efficient gradient computation for solving inverse problems arising in magnetic resonance elastography (MRE). The algorithm can be considered as a generalized 'adjoint method' based on a Lagrangian formulation. One requirement for the classic adjoint method is assurance of the self-adjoint property of the stiffness matrix in the elasticity problem. In this paper, we show this property is no longer a necessary condition in our algorithm, but the computational performance can be as efficient as the classic method, which involves only two forward solutions and is independent of the number of parameters to be estimated. The algorithm is developed and implemented in material property reconstructions using poroelastic and viscoelastic modeling. Various gradient- and Hessian-based optimization techniques have been tested on simulation, phantom and in vivo brain data. The numerical results show the feasibility and the efficiency of the proposed scheme for gradient calculation.


Assuntos
Técnicas de Imagem por Elasticidade , Algoritmos , Encéfalo , Elasticidade , Imagens de Fantasmas
11.
PLoS One ; 8(6): e66824, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826149

RESUMO

ADP-glucose pyrophosphorylase regulates the synthesis of glycogen in bacteria and of starch in plants. The enzyme from plants is mainly activated by 3-phosphoglycerate and is a heterotetramer comprising two small and two large subunits. Here, we found that two highly conserved residues are critical for triggering the activation of the potato tuber ADP-glucose pyrophosphorylase, as shown by site-directed mutagenesis. Mutations in the small subunit, which bears the catalytic function in this potato tuber form, had a more dramatic effect on disrupting the allosteric activation than those introduced in the large subunit, which is mainly modulatory. Our results strongly agree with a model where the modified residues are located in loops responsible for triggering the allosteric activation signal for this enzyme, and the sensitivity to this activation correlates with the dynamics of these loops. In addition, previous biochemical data indicates that the triggering mechanism is widespread in the enzyme family, even though the activator and the quaternary structure are not conserved.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Tubérculos/enzimologia , Solanum tuberosum/enzimologia , Sequência de Aminoácidos , Ativação Enzimática , Glucose-1-Fosfato Adenililtransferase/química , Ácidos Glicéricos/metabolismo , Cinética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...