Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(7): 2816-2834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773974

RESUMO

Purpose: Small molecule drugs such as tyrosine kinase inhibitors (TKIs) targeting tumoral molecular dependencies have become standard of care for numerous cancer types. Notably, epidermal growth factor receptor (EGFR) TKIs (e.g., erlotinib, afatinib, osimertinib) are the current first-line treatment for non-small cell lung cancer (NSCLC) due to their improved therapeutic outcomes for EGFR mutated and overexpressing disease over traditional platinum-based chemotherapy. However, many NSCLC tumors develop resistance to EGFR TKI therapy causing disease progression. Currently, the relationship between in situ drug target availability (DTA), local protein expression and therapeutic response cannot be accurately assessed using existing analytical tools despite being crucial to understanding the mechanism of therapeutic efficacy. Procedure: We have previously reported development of our fluorescence imaging platform termed TRIPODD (Therapeutic Response Imaging through Proteomic and Optical Drug Distribution) that is capable of simultaneous quantification of single-cell DTA and protein expression with preserved spatial context within a tumor. TRIPODD combines two complementary fluorescence imaging techniques: intracellular paired agent imaging (iPAI) to measure DTA and cyclic immunofluorescence (cyCIF), which utilizes oligonucleotide conjugated antibodies (Ab-oligos) for spatial proteomic expression profiling on tissue samples. Herein, TRIPODD was modified and optimized to provide a downstream analysis of therapeutic response through single-cell DTA and proteomic response imaging. Results: We successfully performed sequential imaging of iPAI and cyCIF resulting in high dimensional imaging and biomarker assessment to quantify single-cell DTA and local protein expression on erlotinib treated NSCLC models. Pharmacodynamic and pharmacokinetic studies of the erlotinib iPAI probes revealed that administration of 2.5 mg/kg each of the targeted and untargeted probe 4 h prior to tumor collection enabled calculation of DTA values with high Pearson correlation to EGFR, the erlotinib molecular target, expression in the tumors. Analysis of single-cell biomarker expression revealed that a single erlotinib dose was insufficient to enact a measurable decrease in the EGFR signaling cascade protein expression, where only the DTA metric detected the presence of bound erlotinib. Conclusion: We demonstrated the capability of TRIPODD to evaluate therapeutic response imaging to erlotinib treatment as it relates to signaling inhibition, DTA, proliferation, and apoptosis with preserved spatial context.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Imagem Óptica , Análise de Célula Única , Humanos , Imagem Óptica/métodos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Análise de Célula Única/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Feminino
2.
J Biomed Opt ; 28(8): 082806, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37082104

RESUMO

Significance: Positive margin status due to incomplete removal of tumor tissue during radical prostatectomy for high-risk localized prostate cancer requires reoperation or adjuvant therapy, which increases morbidity and mortality. Adverse effects of prostate cancer treatments commonly include erectile dysfunction, urinary incontinence, and bowel dysfunction, making successful initial curative prostatectomy imperative. Aim: Current intraoperative tumor margin assessment is largely limited to frozen section analysis, which is a lengthy, labor-intensive process that is obtrusive to the clinical workflow within the operating room (OR). Therefore, a rapid method for prostate cancer margin assessment in the OR could improve outcomes for patients. Approach: Dual probe difference specimen imaging (DDSI), which uses paired antibody-based probes that are labeled with spectrally distinct fluorophores, was shown herein for prostate cancer margin assessment. The paired antibody-based probes consisted of a targeted probe to prostate-specific membrane antigen (PSMA) and an untargeted probe, which were used as a cocktail to stain resected murine tissue specimens including prostate tumor, adipose, muscle, and normal prostate. Ratiometric images (i.e., DDSI) of the difference between targeted and untargeted probe uptake were calculated and evaluated for accuracy using receiver operator characteristic curve analysis with area under the curve values used to evaluate the utility of the DDSI method to detect PSMA positive prostate cancer. Results: Targeted and untargeted probe uptake was similar between the high and low PSMA expressing tumor due to nonspecific probe uptake after topical administration. The ratiometric DDSI approach showed substantial contrast difference between the PSMA positive tumors and their respective normal tissues (prostate, adipose, muscle). Furthermore, DDSI showed substantial contrast difference between the high PSMA expressing tumors and the minimally PSMA expressing tumors due to the ratiometric correction for the nonspecific uptake patterns in resected tissues. Conclusions: Previous work has shown that ratiometic imaging has strong predictive value for breast cancer margin status using topical administration. Translation of the ratiometric DDSI methodology herein from breast to prostate cancers demonstrates it as a robust, ratiometric technique that provides a molecularly specific imaging modality for intraoperative margin detection. Using the validated DDSI protocol on resected prostate cancers permitted rapid and accurate assessment of PSMA status as a surrogate for prostate cancer margin status. Future studies will further evaluate the utility of this technology to quantitatively characterize prostate margin status using PSMA as a biomarker.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Diagnóstico por Imagem , Próstata/diagnóstico por imagem , Próstata/cirurgia , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia
4.
Nat Chem ; 15(5): 729-739, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997700

RESUMO

Non-destructive fluorophore diffusion across cell membranes to provide an unbiased fluorescence intensity readout is critical for quantitative imaging applications in live cells and tissues. Commercially available small-molecule fluorophores have been engineered for biological compatibility, imparting high water solubility by modifying rhodamine and cyanine dye scaffolds with multiple sulfonate groups. The resulting net negative charge, however, often renders these fluorophores cell-membrane-impermeant. Here we report the design and development of our biologically compatible, water-soluble and cell-membrane-permeable fluorophores, termed OregonFluor (ORFluor). By adapting previously established ratiometric imaging methodology using bio-affinity agents, it is now possible to use small-molecule ORFluor-labelled therapeutic inhibitors to quantitatively visualize their intracellular distribution and protein target-specific binding, providing a chemical toolkit for quantifying drug target availability in live cells and tissues.


Assuntos
Corantes Fluorescentes , Água , Corantes Fluorescentes/química , Rodaminas/química
5.
BMC Cancer ; 21(1): 440, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882909

RESUMO

BACKGROUND: Re-excision rates following breast conserving surgery (BCS) remain as high as ~ 35%, with positive margins detected during follow-up histopathology. Additional breast cancer resection surgery is not only taxing on the patient and health care system, but also delays adjuvant therapies, increasing morbidity and reducing the likelihood of a positive outcome. The ability to precisely resect and visualize tumor margins in real time within the surgical theater would greatly benefit patients, surgeons and the health care system. Current tumor margin assessment technologies utilized during BCS involve relatively lengthy and labor-intensive protocols, which impede the surgical work flow. METHODS: In previous work, we have developed and validated a fluorescence imaging method termed dual probe difference specimen imaging (DDSI) to accurately detect benign and malignant tissue with direct correlation to the targeted biomarker expression levels intraoperatively. The DDSI method is currently on par with touch prep cytology in execution time (~ 15-min). In this study, the main goal was to shorten the DDSI protocol by decreasing tissue blocking and washing times to optimize the DDSI protocol to < 10-min whilst maintaining robust benign and malignant tissue differentiation. RESULTS: We evaluated the utility of the shortened DDSI staining methodology using xenografts grown from cell lines with varied epidermal growth factor receptor (EGFR) expression levels, comparing accuracy through receiver operator characteristic (ROC) curve analyses across varied tissue blocking and washing times. An optimized 8-min DDSI methodology was developed for future clinical translation. CONCLUSIONS: Successful completion of this work resulted in substantial shortening of the DDSI methodology for use in the operating room, that provided robust, highly receptor specific, sensitive diagnostic capabilities between benign and malignant tissues.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Diagnóstico por Imagem/métodos , Sondas Moleculares , Animais , Neoplasias da Mama/cirurgia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Estadiamento de Neoplasias , Coloração e Rotulagem/métodos
6.
Mol Imaging Biol ; 23(5): 650-664, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33751366

RESUMO

PURPOSE: Personalized medicine has largely failed to produce curative therapies in advanced cancer patients. Evaluation of in situ drug target availability (DTA) concomitant with local protein expression is critical to an accurate assessment of therapeutic efficacy, but tools capable of both are currently lacking. PROCEDURE: We developed and optimized a fluorescence imaging platform termed TRIPODD (Therapeutic Response Imaging through Proteomic and Optical Drug Distribution), resulting in the only methodology capable of simultaneous quantification of single-cell DTA and protein expression with preserved spatial context within a tumor. Using TRIPODD, we demonstrate the feasibility of combining two complementary fluorescence imaging techniques, intracellular paired agent imaging (iPAI) and cyclic immunofluorescence (cyCIF), conducted with oligonucleotide-conjugated antibodies (Ab-oligos) on tissue samples. RESULTS: We successfully performed sequential imaging on a single tissue section of iPAI to capture single-cell DTA and local protein expression heterogeneity using Ab-oligo cyCIF. Fluorescence imaging data acquisition was followed by spatial registration resulting in high dimensional data correlating DTA to protein expression at the single-cell level where uptake of a targeted probe alone was not well correlated to protein expression. CONCLUSION: Herein, we demonstrated the utility of TRIPODD as a powerful imaging platform capable of interpreting tumor heterogeneity for a mechanistic understanding of therapeutic response and resistance through quantification of drug target availability and proteomic response with preserved spatial context at single-cell resolution.


Assuntos
Imagem Molecular/métodos , Neoplasias , Imagem Óptica/métodos , Medicina de Precisão/métodos , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Feminino , Corantes Fluorescentes/farmacocinética , Humanos , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos Nus , Neoplasias/química , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-32292225

RESUMO

Targeting the aberrant epidermal growth factor receptor (EGFR) signaling pathway is an attractive choice for many cancers (e.g., non-small cell lung carcinoma (NSCLC) and head and neck squamous cell carcinoma (HNSCC)). Despite the development of promising therapeutics, incomplete target engagement and acquired resistance (e.g., mutagenesis and intracellular signaling pathway rewiring) ensure that curative options still elude patients. To address limitations posed by standard drag evaluation assays (e.g., western blot, bulk plasma monitoring, immunohistochemistry), we have developed a novel dynamic, fluorescence-based platform termed intracellular paired agent imaging (iPAI). iPAI quantifies intracellular protein target engagement using two matched small-molecule, cell membrane-permeable agents: one targeted to the protein of interest and one untargeted, which accounts for non-specific therapeutic uptake. Currently, our iPAI panel includes successfully characterized tyrosine kinase inhibitors targeting the kinase binding domain of numerous proteins in the EGFR pathway, including erlotinib (EGFR). Here, we present a pharmacokinetic uptake study using our novel iPAI erlotinib reagents: a targeted erlotinib probed conjugated to silicon tetramethylrhodamine (Erl-SiTMR-T) and an untargeted reagent conjugated to tetramethylrhodaime (Erl-TMR-UT). An initial uptake study in a cell derived xenograft (CDX) model of NSCLC was performed by administering the Erl iPAI reagents systemically via tail vein injection, where drag uptake was quantified in the tumor over time. Excitingly, evidence of heterogeneous uptake was observed in the iPAI injected cohort, displaying distinct drug-uptake within a single tumor. Characterization of additional iPAI agents targeting downstream effectors (e.g., AKT, PI3K, MEK and ERK) is ongoing and will allow us to visualize complex drug-target interactions and quantify their downstream signaling partners during treatment regimens for NSCLC and other cancers. Together, we anticipate these iPAI probes will improve understanding of current limitations in personalized cancer therapy.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32296256

RESUMO

Successful cancer treatment continues to elude modern medicine and its arsenal of therapeutic strategies. Therapy resistance is driven by significant tumor heterogeneity, complex interactions between malignant, microenvironmental and immune cells and cross talk between signaling pathways. Advances in molecular characterization technologies such as next generation sequencing have helped unravel this network of interactions and identify druggable therapeutic targets. Tyrosine kinase inhibitors (TKI) are a class of drugs seeking to inhibit signaling pathways critical to sustaining proliferative signaling, resisting cell death, and the other hallmarks of cancer. While tumors may initially respond to TKI therapy, disease progression is near universal due to mechanisms of acquired resistance largely involving cellular signaling pathway reprogramming. With the ultimate goal of improved TKI therapeutic efficacy our group has developed intracellular paired agent imaging (iPAI) to quantify drug target interactions and oligonucleotide conjugated antibody (Ab-oligo) cyclic immunofluorescence (cycIF) imaging to characterize perturbed signaling pathways in response to therapy. iPAI uses spectrally distinct, fluorescently labeled targeted and untargeted drug derivatives, correcting for non-specific drug distribution and facilitating quantitative assessment of the drug binding before and after therapy. Ab-oligo cycIF exploits in situ hybridization of complementary oligonucleotides for biomarker labeling while oligonucleotide modifications facilitate signal removal for sequential rounds of fluorescent tagging and imaging. Ab-oligo CycIF is capable of generating extreme multi-parametric images for quantifying total and phosphorylated protein expression to quantify protein activation, expression, and spatial distribution. Together iPAI and Ab-oligo cycIF can be applied to interrogate drug uptake and target binding as well as changes to heterogenous cell populations within tumors that drive variable therapeutic responses in patients.

9.
PLoS One ; 15(2): e0229407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32097436

RESUMO

Therapeutic resistance plagues cancer outcomes, challenging treatment particularly in aggressive disease. A unique method to decipher drug interactions with their targets and inform therapy is to employ fluorescence-based screening tools; however, to implement productive screening assays, adequate model systems must be developed. Patient-derived pancreatic cancer models (e.g., cell culture, patient-derived xenograft mouse models, and organoids) have been traditionally utilized to predict personalized therapeutic response. However, cost, long read out times and the inability to fully recapitulate the tumor microenvironment have rendered most models incompatible with clinical decision making for pancreatic ductal adenocarcinoma (PDAC) patients. Tumor explant cultures, where patient tissue can be kept viable for up to weeks, have garnered interest as a platform for delivering personalized therapeutic prediction on a clinically relevant timeline. To fully explore this ex vivo platform, a series of studies were completed to quantitatively compare in vivo models with tumor explants, examining gemcitabine therapeutic efficacy, small molecule uptake and drug-target engagement using a novel fluorescently-labeled gemcitabine conjugate. This initial work shows promise for patient-specific therapeutic selection, where tumor explant drug distribution and response recapitulated the in vivo behavior and could provide a valuable platform for understanding mechanisms of therapeutic response and resistance.


Assuntos
Carcinoma Ductal Pancreático/patologia , Desoxicitidina/análogos & derivados , Modelos Animais de Doenças , Corantes Fluorescentes/farmacocinética , Organoides/patologia , Neoplasias Pancreáticas/patologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Desoxicitidina/química , Desoxicitidina/farmacologia , Feminino , Corantes Fluorescentes/química , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Pessoa de Meia-Idade , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
10.
Artigo em Inglês | MEDLINE | ID: mdl-32296254

RESUMO

Quantification of protein concentrations is often a static and tissue destructive technique. Paired-agent imaging (PAI) using matched targeted and untargeted agents has been established as a dynamic method for quantifying the extracellular domain of epidermal growth factor receptor (EGFR) in vivo in a variety of tumor lines. Here we extend the PAI model to simultaneously quantify the extracellular and intracellular regions of EGFR using novel cell membrane permeable fluorescent small molecules, TRITC-erlotinib (targeted) and BODIPY-N-erlotinib (non-binding control isoform) synthesized in house. An EGFR overexpressing squamous cell carcinoma cell xenograft tumor, A431, was implanted on the chorioallantoic membrane (CAM) of the embryonated chicken egg. In total six fluorescent molecules were administered and monitored over 1 h using multi-spectral imaging. EGFR concentrations were determined using both extracellular and intracellular PAI methods. The fluorescent molecules used for extracellular PAI were ABY-029, an anti-EGFR Affibody molecule conjugated to IRDye 800CW, and a Control Imaging Agent Affibody molecule conjugated to IRDye 680RD. The intracellular PAI (iPAI) fluorescent molecules were cell membrane penetrating TRITC-erlotinib, BODIPY-N-erlotinb, and BODIPY TR carboxylate, as well as cell membrane impermeant control agent, Alexa Fluor 647 carboxylate. Results from simultaneous imaging of both the extracellular and intracellular binding domains of EGFR indicate that concentrations of intracellular EGFR are higher than extracellular. This is anticipated as EGFR exists in two distinct populations in cells, cell membrane bound and internalized, activated protein. iPAI is a promising new method for quantifying intracellular proteins in a rapid tumor model on the chicken CAM.

11.
Phys Rev Lett ; 112(15): 158103, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785077

RESUMO

Intrinsically disordered proteins form transient, fluctuating structures that are difficult to observe directly. We used optical tweezers to apply force to single α-synuclein molecules and measure their extension, characterizing the resulting conformational transitions. Force-extension curves revealed rapid fluctuations at low force, arising from the folding of two different classes of structure that were only marginally stable. The energy landscape for these transitions was characterized via the force-dependent kinetics derived from correlation analysis of the extension trajectories. The barriers were small, only a few kBT, but the diffusion was slow, revealing a landscape that is flat but rough.


Assuntos
alfa-Sinucleína/química , DNA/química , Microscopia de Força Atômica/métodos , Modelos Químicos , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Análise Espectral/métodos , Termodinâmica
12.
PLoS One ; 9(1): e86495, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475132

RESUMO

Oligomeric aggregates are widely suspected as toxic agents in diseases caused by protein aggregation, yet they remain poorly characterized, partly because they are challenging to isolate from a heterogeneous mixture of species. We developed an assay for characterizing structure, stability, and kinetics of individual oligomers at high resolution and sensitivity using single-molecule force spectroscopy, and applied it to observe the formation of transient structured aggregates within single oligomers of α-synuclein, an intrinsically-disordered protein linked to Parkinson's disease. Measurements of the molecular extension as the proteins unfolded under tension in optical tweezers revealed that even small oligomers could form numerous metastable structures, with a surprisingly broad range of sizes. Comparing the structures formed in monomers, dimers and tetramers, we found that the average mechanical stability increased with oligomer size. Most structures formed within a minute, with size-dependent rates. These results provide a new window onto the complex α-synuclein aggregation landscape, characterizing the microscopic structural heterogeneity and kinetics of different pathways.


Assuntos
Estrutura Quaternária de Proteína , alfa-Sinucleína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Pinças Ópticas , Agregados Proteicos , Engenharia de Proteínas , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Análise Espectral/métodos , Termodinâmica , alfa-Sinucleína/genética
13.
Proc Natl Acad Sci U S A ; 109(14): 5283-8, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22421432

RESUMO

Protein misfolding is a ubiquitous phenomenon associated with a wide range of diseases. Single-molecule approaches offer a powerful tool for deciphering the mechanisms of misfolding by measuring the conformational fluctuations of a protein with high sensitivity. We applied single-molecule force spectroscopy to observe directly the misfolding of the prion protein PrP, a protein notable for having an infectious misfolded state that is able to propagate by recruiting natively folded PrP. By measuring folding trajectories of single PrP molecules held under tension in a high-resolution optical trap, we found that the native folding pathway involves only two states, without evidence for partially folded intermediates that have been proposed to mediate misfolding. Instead, frequent but fleeting transitions were observed into off-pathway intermediates. Three different misfolding pathways were detected, all starting from the unfolded state. Remarkably, the misfolding rate was even higher than the rate for native folding. A mutant PrP with higher aggregation propensity showed increased occupancy of some of the misfolded states, suggesting these states may act as intermediates during aggregation. These measurements of individual misfolding trajectories demonstrate the power of single-molecule approaches for characterizing misfolding directly by mapping out nonnative folding pathways.


Assuntos
Príons/metabolismo , Dobramento de Proteína , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...