Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 141(4): 1488-98, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26793795

RESUMO

Creatinine is the most important parameter to be determined in the diagnosis of renal, muscular and thyroid function. The most common method for the determination of creatinine is Jaffe's reaction, a routine practice for blood and urine analysis. However, in cases of icteric and haemolyzed blood samples, interference occurs during the estimation of creatinine by other constituents present in the blood like bilirubin, creatine, and urea, which lead to wrong diagnosis. To overcome such difficulty, we have developed a silver nanoparticle (Ag NPs) based sensor for the selective determination of creatinine. In this study, a new approach has been given to the traditional Jaffe's reaction, by coating Ag NPs with picric acid (PA) to form an assembly that can selectively detect creatinine. The Ag NPs based sensor proficiently and selectively recognizes creatinine due to the ability of picric acid to bind with it and form a complex. The nanoassembly and the interactions were investigated by transmission electron microscopy (TEM), dynamic light scattering (DLS) analysis, UV-Vis spectroscopy, FT-IR spectroscopy and ESI-MS, which demonstrated the binding affinity of creatinine with PA-capped Ag NPs. A linear correlation was obtained in the range of 0.01 µM-1 µM with an R(2) value of 0.9998 and a lower detection limit of 8.4 nM. The sensor was successfully applied to different types of blood and CSF samples for the determination of creatinine, and the results were compared to that of the Jaffe's method. With the advantages of high sensitivity, selectivity and low sample volume, this method is potentially suitable for the on-site monitoring of creatinine.


Assuntos
Análise Química do Sangue/métodos , Colorimetria/métodos , Creatinina/sangue , Creatinina/líquido cefalorraquidiano , Nanopartículas Metálicas/química , Picratos/química , Prata/química , Creatinina/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...